cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124811 Number of 4-ary Lyndon words of length n with exactly three 1s.

Original entry on oeis.org

3, 18, 89, 405, 1701, 6801, 26244, 98415, 360846, 1299078, 4605822, 16120350, 55801305, 191318760, 650483703, 2195382771, 7360989291, 24536630727, 81358302690, 268482398877, 882156452724, 2887057484028, 9414317882700, 30596533116588, 99132767304831
Offset: 4

Views

Author

Mike Zabrocki, Nov 08 2006

Keywords

Examples

			a(5) = 18 because 111ab and 11a1b are Lyndon of length 4 for ab=2,3,4.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(3-9*x+8*x^2)/((1-3*x)^3*(1-3*x^3)) )); // G. C. Greubel, Aug 08 2023
    
  • Mathematica
    (3-9*x+8*x^2)/((1-3*x)^3*(1-3*x^3)) + O[x]^23//CoefficientList[#, x]& (* Jean-François Alcover, Sep 19 2017 *)
    LinearRecurrence[{9,-27,30,-27,81,-81}, {3,18,89,405,1701,6801}, 41] (* G. C. Greubel, Aug 08 2023 *)
  • SageMath
    def b(n): return (1/2)*(1 + (-1)^(n + (n+1)//3))*3^(n//3)
    def A124811(n): return 3^(n-4)*binomial(n-1,2) - b(n-6)
    [A124811(n) for n in range(4,41)] # G. C. Greubel, Aug 08 2023

Formula

O.g.f.: x^4*(3-9*x+8*x^2)/((1-3*x)^3*(1-3*x^3)).
O.g.f.: (1/3)*((x/(1-3*x))^3 - x^3/(1-3*x^3)).
a(n) = (1/3)*Sum_{d|3, d|n} mu(d) C(n/d-1,(n-3)/d)*3^((n-3)/d).
a(n) = 3^(n/3-2)*(binomial(n-1, 2)*3^(2*n/3-2) - 1 + (n^2 mod 3)).
a(n) = 3^(n-4)*binomial(n-1, 2) - b(n-6), where b(n) = A079978(n)*3^floor(n/3). - G. C. Greubel, Aug 08 2023