cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124812 Number of 4-ary Lyndon words of length n with exactly four 1s.

Original entry on oeis.org

3, 21, 135, 702, 3402, 15282, 65610, 270540, 1082565, 4221639, 16120377, 60450138, 223205220, 813100356, 2927177028, 10428053400, 36804946455, 128817263385, 447470664795, 1543773631158, 5292938720718, 18044108743734, 61193066237550
Offset: 5

Views

Author

Mike Zabrocki, Nov 08 2006

Keywords

Examples

			a(6) = 21 because 1111ab, 1111ba, 111a1b, 111b1a, 11a11b for ab = 23, 24, 34 (accounting for 15 words) and 1111aa, 111a1a for a=2,3,4 (accounting for 6 words) are all Lyndon of length 6
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 3*(1-5*x+9*x^2-6*x^3)/((1-3*x)^4*(1-3*x^2)^2) )); // G. C. Greubel, Aug 09 2023
    
  • Mathematica
    3*(1-5*x+9*x^2-6*x^3)/((1-3*x)^4*(1-3*x^2)^2) + O[x]^23 // CoefficientList[#, x]& (* Jean-François Alcover, Sep 19 2017 *)
    LinearRecurrence[{12,-48,36,234,-540,0,972,-729}, {3,21,135,702,3402, 15282,65610,270540}, 41] (* G. C. Greubel, Aug 09 2023 *)
  • SageMath
    def A124812(n): return (3/4)*(3^(n-5)*binomial(n-1,3) - ((n-2)//2)*3^((n-6)//2)*((n-5)%2))
    [A124812(n) for n in range(5,41)] # G. C. Greubel, Aug 09 2023

Formula

O.g.f.: 3*x^5*(1 - 5*x + 9*x^2 - 6*x^3)/((1 - 3*x^2)^2*(1 - 3*x)^4).
G.f.: (1/4)*( (x/(1-3*x))^4 - x^4/(1-3*x^2)^2 ).
a(n) = (1/4)*Sum_{d|4,d|n} mu(d)*C(n/d - 1, (n-4)/d)*3^((n-4)/d).
a(n) = (1/4)*C(n-1, 3)*3^(n-4) if n is odd, a(n) = (1/4)*( C(n-1, 3)*3^(n-4) - (n/2-1)*3^((n-4)/2) ) if n is even.
a(n) = (3/4)*( 3^(n-5)*binomial(n-1, 3) - ((n-2)/2)*A254006(n-6) ). - G. C. Greubel, Aug 09 2023