cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124813 Number of 4-ary Lyndon words of length n with exactly five 1s.

Original entry on oeis.org

3, 27, 189, 1134, 6123, 30618, 144342, 649539, 2814669, 11821608, 48361131, 193444524, 758897748, 2927177028, 11123272701, 41712272649, 154580775111, 566796175407, 2058365058057, 7410114208989, 26464693603590, 93829368230910
Offset: 6

Views

Author

Mike Zabrocki, Nov 08 2006

Keywords

Examples

			a(7) = 27 because 11111ab, 1111a1b, 111a11b for a,b=2,3,4 are all Lyndon of length 7.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 3*x^6*(1-6*x+18*x^2-27*x^3+16*x^4)/((1-3*x)^5*(1-3*x^5)) )); // G. C. Greubel, Aug 17 2023
    
  • Mathematica
    3*(1 -6*x +18*x^2 -27*x^3 +16*x^4)/((1-3*x)^5*(1-3*x^5)) + O[x]^22 // CoefficientList[#, x]& (* Jean-François Alcover, Sep 19 2017 *)
  • SageMath
    def f(x): return 3*x^6*(1-6*x+18*x^2-27*x^3+16*x^4)/((1-3*x)^5*(1-3*x^5))
    def A124813_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(x) ).list()
    a=A124813_list(46); a[6:] # G. C. Greubel, Aug 17 2023

Formula

O.g.f.: 3*x^6*(1 - 6*x + 18*x^2 - 27*x^3 + 16*x^4)/((1 - 3*x)^5*(1 - 3*x^5)).
O.g.f.: (1/5)*((x/(1-3*x))^5 - x^5/(1-3*x^5)).
a(n) = (1/5)*Sum_{d|5, d|n} mu(d)*C(n/d-1, (n-5)/d )*3^((n-5)/d).
a(n) = (1/5)*C(n-1, 4)*3^(n-5) if n=1,2,3,4 mod 5.
a(n) = (1/5)*C(n-1, 4)*3^(n-5) - (1/5)*3^((n-5)/5) if n=0 mod 5.