cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124815 Expansion of q * psi(q)^2 * psi(-q^3)^2 * phi(-q^6) / phi(-q^2) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 12, 12, 14, 12, 12, 16, 16, 18, 18, 16, 18, 24, 24, 24, 21, 28, 27, 24, 28, 24, 30, 32, 36, 32, 24, 36, 38, 36, 42, 32, 40, 36, 42, 48, 36, 48, 48, 48, 43, 42, 48, 56, 52, 54, 48, 48, 54, 56, 60, 48, 62, 60, 54, 64, 56, 72, 66, 64, 72, 48, 72, 72
Offset: 1

Views

Author

Michael Somos, Nov 08 2006

Keywords

Comments

Number 24 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 3*q^3 + 4*q^4 + 4*q^5 + 6*q^6 + 6*q^7 + 8*q^8 + 9*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ n/d KroneckerSymbol[ 12, d], { d, Divisors[ n]}]]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^2]^2 QPochhammer[ q^3]^2 QPochhammer[ q^4] QPochhammer[ q^12]/QPochhammer[ q]^2, {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, n/d * kronecker( 12, d)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; f = kronecker( 12, p); (p^(e+1) - f^(e+1)) / (p - f)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^12 + A) / eta(x + A)^2, n))};

Formula

Expansion of (eta(q^2) * eta(q^3) / eta(q))^2 * eta(q^4) * eta(q^12) in powers of q.
Euler transform of period 12 sequence [ 2, 0, 0, -1, 2, -2, 2, -1, 0, 0, 2, -4, ...].
a(n) is multiplicative with a(p^e) = p^e if p<5, a(p^e) = (p^(e+1) - 1) / (p-1) if p == 1, 11 (mod 12), a(p^e) = (p^(e+1) + (-1)^e) / (p+1) if p == 5, 7 (mod 12).
G.f.: Sum_{k>0} k * x^k * (1 - x^(2*k)) / (1 - x^(2*k) + x^(4*k)).
G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 - x^(3*k))^2 * (1 - x^(4*k)) * (1 - x^(12*k)).
a(2*n) = 2 * a(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^2/(6*sqrt(3)) = 0.949703... (A258414). - Amiram Eldar, Dec 22 2023