cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124834 Triangle, read by rows, where the g.f. of column k, C_k(x), is equal to the product: C_k(x) = Product_{k=0..n} 1/(1 - binomial(n,k)*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 8, 1, 1, 5, 26, 42, 16, 1, 1, 6, 57, 184, 163, 32, 1, 1, 7, 120, 731, 1358, 638, 64, 1, 1, 8, 247, 2736, 10121, 10244, 2510, 128, 1, 1, 9, 502, 9844, 70436, 145475, 78320, 9908, 256, 1, 1, 10, 1013, 34448, 468735, 1911956, 2141835
Offset: 0

Views

Author

Paul D. Hanna, Nov 09 2006

Keywords

Examples

			Column g.f.s begin:
C_0(x) = 1/(1-x);
C_1(x) = 1/((1-x)(1-x));
C_2(x) = 1/((1-x)(1-2x)(1-x));
C_3(x) = 1/((1-x)(1-3x)(1-3x)(1-x));
C_4(x) = 1/((1-x)(1-4x)(1-6x)(1-4x)(1-x)); ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 11, 8, 1;
1, 5, 26, 42, 16, 1;
1, 6, 57, 184, 163, 32, 1;
1, 7, 120, 731, 1358, 638, 64, 1;
1, 8, 247, 2736, 10121, 10244, 2510, 128, 1;
1, 9, 502, 9844, 70436, 145475, 78320, 9908, 256, 1;
1, 10, 1013, 34448, 468735, 1911956, 2141835, 604160, 39203, 512, 1; ...
		

Crossrefs

Cf. A124835 (row sums), A124836 (central terms).

Programs

  • PARI
    {T(n,k)=polcoeff(1/prod(j=0,k,1-binomial(k,j)*x +x*O(x^n)),n-k)}

Formula

T(n+1,n) = 2^n. T(n+2,n) = A032443(n) = Sum_{i=0..n} binomial(2*n,i).

A124836 Central terms of even-indexed rows in triangle A124834.

Original entry on oeis.org

1, 2, 11, 184, 10121, 1911956, 1277642344, 3076635199744, 27117951046505365, 883613507047099010632, 107474419453579127300333278, 49091717449041719016035290742176, 84772868574056134938044881265953518335, 555628412000611011592987340845035908323617024, 13889914561952086638362253697842716117160344082246744
Offset: 0

Views

Author

Paul D. Hanna, Nov 09 2006

Keywords

Examples

			a(0) = 1 = [x^0] 1/(1-x);
a(1) = 2 = [x^1] 1/((1-x)(1-x));
a(2) = 11 = [x^2] 1/((1-x)(1-2x)(1-x));
a(3) = 184 = [x^3] 1/((1-x)(1-3x)(1-3x)(1-x));
a(4) = 10121 = [x^4] 1/((1-x)(1-4x)(1-6x)(1-4x)(1-x));
a(5) = 1911956 = [x^5] 1/((1-x)(1-5x)(1-10x)(1-10x)(1-5x)(1-x)); ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Product[1/(1 - Binomial[n, k]*x) , {k, 0, n}], {x, 0, n}];
    Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jul 01 2017 *)
  • PARI
    {a(n)=polcoeff(1/prod(j=0,n,1-binomial(n,j)*x +x*O(x^n)),n)}

Formula

G.f.: A(x) = [x^n] * Product_{k=0..n} 1/(1 - binomial(n,k)*x).
Showing 1-2 of 2 results.