cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124860 A Jacobsthal-Pascal triangle.

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 5, 15, 15, 5, 11, 44, 66, 44, 11, 21, 105, 210, 210, 105, 21, 43, 258, 645, 860, 645, 258, 43, 85, 595, 1785, 2975, 2975, 1785, 595, 85, 171, 1368, 4788, 9576, 11970, 9576, 4788, 1368, 171, 341, 3069, 12276, 28644, 42966, 42966, 28644, 12276, 3069, 341
Offset: 0

Views

Author

Paul Barry, Nov 10 2006

Keywords

Comments

Triangle T(n, k) read by rows given by [1, 2, -2, 0, 0, 0, ...] DELTA [1, 2, -2, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 11 2006

Examples

			Triangle begins
   1;
   1,   1;
   3,   6,   3;
   5,  15,  15,   5;
  11,  44,  66,  44,  11;
  21, 105, 210, 210, 105,  21;
  43, 258, 645, 860, 645, 258, 43;
		

Crossrefs

Cf. A001045, A003683 (row sums), A016095, A084938, A124862 (diagonal sums), A193449.

Programs

  • Magma
    A124860:= func< n,k | Binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3 >;
    [A124860(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Maple
    A := proc(n,k) ## n >= 0 and k = 0 .. n
        ((-1)^n+2^(n+1))/3*binomial(n, k)
    end proc: # Yu-Sheng Chang, Jan 15 2020
  • Mathematica
    jacobPascal[n_, k_]:= Binomial[n, k]*(2^(n+1) -(-1)^(n+1))/3; ColumnForm[Table[jacobPascal[n, k], {n,0,12}, {k,0,n}], Center] (* Alonso del Arte, Jan 16 2020 *)
  • SageMath
    def A124860(n,k): return binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3
    flatten([[A124860(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

G.f.: 1/(1 - x*(1+y) - 2*x^2*(1+y)^2).
T(n, k) = J(n+1) * C(n, k), where J(n) = A001045(n).
T(n, 0) = T(n, n) = A001045(n+1).
T(2*n, n) = A124862(n).
Sum_{k=0..n} T(n, k) = A003683(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A124861(n).
T(n, k) = T(n-1, k-1) + T(n-1, k) + 2*T(n-2, k-2) + 4*T(n-2, k-1) + 2*T(n-2, k), T(0, 0) = 1, T(n, k) = 0 if k < 0 or if k > n . - Philippe Deléham, Nov 11 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k + 1 + 2*x*(1+y))*x*(1 + y)/((2*k + 2 + 2*x*(1+y))*x*(1+y) + 1/T(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
From G. C. Greubel, Feb 17 2023: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A193449(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)