A124860 A Jacobsthal-Pascal triangle.
1, 1, 1, 3, 6, 3, 5, 15, 15, 5, 11, 44, 66, 44, 11, 21, 105, 210, 210, 105, 21, 43, 258, 645, 860, 645, 258, 43, 85, 595, 1785, 2975, 2975, 1785, 595, 85, 171, 1368, 4788, 9576, 11970, 9576, 4788, 1368, 171, 341, 3069, 12276, 28644, 42966, 42966, 28644, 12276, 3069, 341
Offset: 0
Examples
Triangle begins 1; 1, 1; 3, 6, 3; 5, 15, 15, 5; 11, 44, 66, 44, 11; 21, 105, 210, 210, 105, 21; 43, 258, 645, 860, 645, 258, 43;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A124860:= func< n,k | Binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3 >; [A124860(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
-
Maple
A := proc(n,k) ## n >= 0 and k = 0 .. n ((-1)^n+2^(n+1))/3*binomial(n, k) end proc: # Yu-Sheng Chang, Jan 15 2020
-
Mathematica
jacobPascal[n_, k_]:= Binomial[n, k]*(2^(n+1) -(-1)^(n+1))/3; ColumnForm[Table[jacobPascal[n, k], {n,0,12}, {k,0,n}], Center] (* Alonso del Arte, Jan 16 2020 *)
-
SageMath
def A124860(n,k): return binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3 flatten([[A124860(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023
Formula
G.f.: 1/(1 - x*(1+y) - 2*x^2*(1+y)^2).
T(n, k) = J(n+1) * C(n, k), where J(n) = A001045(n).
T(n, 0) = T(n, n) = A001045(n+1).
T(2*n, n) = A124862(n).
Sum_{k=0..n} T(n, k) = A003683(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A124861(n).
T(n, k) = T(n-1, k-1) + T(n-1, k) + 2*T(n-2, k-2) + 4*T(n-2, k-1) + 2*T(n-2, k), T(0, 0) = 1, T(n, k) = 0 if k < 0 or if k > n . - Philippe Deléham, Nov 11 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k + 1 + 2*x*(1+y))*x*(1 + y)/((2*k + 2 + 2*x*(1+y))*x*(1+y) + 1/T(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
From G. C. Greubel, Feb 17 2023: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A193449(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)
Comments