cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A193449 Products of the Jacobsthal numbers and the integers: a(n) = n * A001045(n+1).

Original entry on oeis.org

0, 1, 6, 15, 44, 105, 258, 595, 1368, 3069, 6830, 15015, 32772, 70993, 152922, 327675, 699056, 1485477, 3145734, 6640975, 13981020, 29360121, 61516466, 128625315, 268435464, 559240525, 1163220318, 2415919095, 5010795188, 10379504289, 21474836490, 44381328715
Offset: 0

Views

Author

Olivier Gérard, Jul 26 2011

Keywords

Comments

a(n) = n * A001045(n+1).
This sequence is the sum of several triangles of integers (see formula section)

Crossrefs

Cf. A001045, Equals second column of A124860, equals sum of A193450 or A193451.

Programs

  • Magma
    [n*(2^(n + 1) + (-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Oct 21 2012
    
  • Mathematica
    Table[Sum[n Binomial[n, k] HypergeometricPFQ[{1, -k}, {-n}, -1], {k, 0, n}], {n, 0, 35}]
    CoefficientList[Series[(x*(1 + 4*x))/(2*x^2 + x - 1)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Oct 21 2012 *)
  • Python
    def A193449(n): return (((1<Chai Wah Wu, Apr 18 2025

Formula

G.f.: x*(1 + 4*x)/( 2*x^2+x-1)^2
a(n) = n*(2^(n + 1) + (-1)^n)/3
a(n)= sum( sum( (-1)^(j+k)*(j+k)*C(n-k+j,j), j=0..k), k=0..n)
a(n)= sum( n*C(n, k)*2F1( (1, -k); -n )(-1), k=0..n)
a(n)= sum( sum( (-1)^j*n*C(n-j,k-j), j=0..k), k=0..n)
a(n)= sum( (1+2*k)*C(n+1, k+1)*2F1( (1, n+2); k+2 )(-1) - C(n+2, k+2) 2F1( (2, n+3); k+3 )(-1) - (-1)^(k) * 2^(k-n-2) * (n-3*k+1) , k=0..n) with C(n,k) the binomial coefficient and 2F1( ) the hypergeometric function.

A124861 Expansion of 1/(1-x-3*x^2-4*x^3-2*x^4).

Original entry on oeis.org

1, 1, 4, 11, 29, 80, 219, 597, 1632, 4459, 12181, 33280, 90923, 248405, 678656, 1854123, 5065557, 13839360, 37809835, 103298389, 282216448, 771029675, 2106492245, 5755043840, 15723072171, 42956232021, 117358608384, 320629680811, 875976578389, 2393212518400, 6538378193579
Offset: 0

Views

Author

Paul Barry, Nov 10 2006

Keywords

Comments

Diagonal sums of number triangle A124860.

Programs

  • Mathematica
    LinearRecurrence[{1,3,4,2},{1,1,4,11},30] (* or *) CoefficientList[ Series[ 1/(1-x-3x^2-4x^3-2x^4),{x,0,30}],x] (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    Vec(1/(1-x-3*x^2-4*x^3-2*x^4) + O(x^40)) \\ Michel Marcus, May 19 2025

Formula

a(n) = a(n-1)+3*a(n-2)+4*a(n-3)+2*a(n-4); a(n) = Sum_{k=0..floor(n/2)} J(n-k+1)*C(n-k,k) where J(n) = A001045(n). - corrected by Harvey P. Dale, Apr 22 2011
G.f.: 1 + x/(G(0) - x) where G(k) = 1 - 8*x - 2*k*x + k + 2*x*(k+1)*(k+5)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 09 2013

Extensions

More terms from Michel Marcus, May 19 2025

A124862 a(n)=J(2n+1)*C(2n,n), J(n)=A001045(n).

Original entry on oeis.org

1, 6, 66, 860, 11970, 172116, 2523444, 37487736, 562303170, 8496977060, 129153866556, 1972531074696, 30245473774516, 465314970745800, 7179145222818600, 111037445957810160, 1721080411744977090
Offset: 0

Views

Author

Paul Barry, Nov 10 2006

Keywords

Comments

Central coefficients of number triangle A124860.
Showing 1-3 of 3 results.