cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A268766 T(n,k)=Number of nXk binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 5, 15, 15, 5, 10, 44, 56, 44, 10, 20, 105, 223, 223, 105, 20, 38, 258, 762, 1148, 762, 258, 38, 71, 595, 2607, 5170, 5170, 2607, 595, 71, 130, 1368, 8500, 23156, 32056, 23156, 8500, 1368, 130, 235, 3069, 27411, 99057, 193573, 193573, 99057
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Table starts
...0....1......2.......5........10.........20...........38............71
...1....6.....15......44.......105........258..........595..........1368
...2...15.....56.....223.......762.......2607.........8500.........27411
...5...44....223....1148......5170......23156........99057........418924
..10..105....762....5170.....32056.....193573......1129042.......6475898
..20..258...2607...23156....193573....1552272.....12111209......92571436
..38..595...8500...99057...1129042...12111209....127676872....1312123185
..71.1368..27411..418924...6475898...92571436...1312123185...18045771274
.130.3069..86622.1736105..36505596..696659613..13311824510..245588158242
.235.6830.270955.7122856.203462597.5178525870.133228716170.3292985469950

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .1..0..0..0. .1..0..0..1. .0..0..0..1. .0..1..1..0
..0..1..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..0..0..1. .0..1..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..1
..0..1..0..0. .0..1..0..0. .0..1..0..0. .1..0..0..1. .0..1..0..0
		

Crossrefs

Column 1 is A001629.
Column 2 is A193449.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4)
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6)
k=4: [order 8]
k=5: [order 12]
k=6: [order 16]
k=7: [order 28]

A124860 A Jacobsthal-Pascal triangle.

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 5, 15, 15, 5, 11, 44, 66, 44, 11, 21, 105, 210, 210, 105, 21, 43, 258, 645, 860, 645, 258, 43, 85, 595, 1785, 2975, 2975, 1785, 595, 85, 171, 1368, 4788, 9576, 11970, 9576, 4788, 1368, 171, 341, 3069, 12276, 28644, 42966, 42966, 28644, 12276, 3069, 341
Offset: 0

Views

Author

Paul Barry, Nov 10 2006

Keywords

Comments

Triangle T(n, k) read by rows given by [1, 2, -2, 0, 0, 0, ...] DELTA [1, 2, -2, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 11 2006

Examples

			Triangle begins
   1;
   1,   1;
   3,   6,   3;
   5,  15,  15,   5;
  11,  44,  66,  44,  11;
  21, 105, 210, 210, 105,  21;
  43, 258, 645, 860, 645, 258, 43;
		

Crossrefs

Cf. A001045, A003683 (row sums), A016095, A084938, A124862 (diagonal sums), A193449.

Programs

  • Magma
    A124860:= func< n,k | Binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3 >;
    [A124860(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Maple
    A := proc(n,k) ## n >= 0 and k = 0 .. n
        ((-1)^n+2^(n+1))/3*binomial(n, k)
    end proc: # Yu-Sheng Chang, Jan 15 2020
  • Mathematica
    jacobPascal[n_, k_]:= Binomial[n, k]*(2^(n+1) -(-1)^(n+1))/3; ColumnForm[Table[jacobPascal[n, k], {n,0,12}, {k,0,n}], Center] (* Alonso del Arte, Jan 16 2020 *)
  • SageMath
    def A124860(n,k): return binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3
    flatten([[A124860(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

G.f.: 1/(1 - x*(1+y) - 2*x^2*(1+y)^2).
T(n, k) = J(n+1) * C(n, k), where J(n) = A001045(n).
T(n, 0) = T(n, n) = A001045(n+1).
T(2*n, n) = A124862(n).
Sum_{k=0..n} T(n, k) = A003683(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A124861(n).
T(n, k) = T(n-1, k-1) + T(n-1, k) + 2*T(n-2, k-2) + 4*T(n-2, k-1) + 2*T(n-2, k), T(0, 0) = 1, T(n, k) = 0 if k < 0 or if k > n . - Philippe Deléham, Nov 11 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k + 1 + 2*x*(1+y))*x*(1 + y)/((2*k + 2 + 2*x*(1+y))*x*(1+y) + 1/T(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
From G. C. Greubel, Feb 17 2023: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A193449(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)

A099429 A Jacobsthal-Lucas convolution.

Original entry on oeis.org

0, 0, 2, 3, 12, 25, 66, 147, 344, 765, 1710, 3751, 8196, 17745, 38234, 81915, 174768, 371365, 786438, 1660239, 3495260, 7340025, 15379122, 32156323, 67108872, 139810125, 290805086, 603979767, 1252698804, 2594876065, 5368709130, 11095332171, 22906492256
Offset: 0

Views

Author

Paul Barry, Oct 15 2004

Keywords

Comments

Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 02 2014
If we concatenate the lexicographically ordered bit strings of length n, then a(n) is the number of times 11 appears as a substring, if overlapping substrings are not considered as being separate. - John M. Campbell, Jan 18 2019

Examples

			G.f. = 2*x^2 + 3*x^3 + 12*x^4 + 25*x^5 + 66*x^6 + 147*x^7 + 344*x^8 + ...
If we concatenate the lexicographically ordered bit strings of length 4, we obtain the expression 0000000100100011010001010110011110001001101010111100110111101111, and we see that the substring 11 appears a total of a(4) = 12 times, with overlapping substrings not being considered as being separate. - _John M. Campbell_, Jan 18 2019
		

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!( x^2*(2-x)/(1-x-2*x^2)^2 )); // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    CoefficientList[Series[x^2*(2-x)/(1-x-2x^2)^2, {x, 0, 32}], x] (* Michael De Vlieger, Jan 18 2019 *)
  • PARI
    {a(n) = if( n>=0, polcoeff( x^2*(2-x)/((1+x)*(1-2*x))^2 + x*O(x^n), n), polcoeff( x*(1-2*x)/((1+x)*(2-x))^2 + x*O(x^-n), -n) )}; /* Michael Somos, Jun 02 2014 */
    
  • Sage
    (x^2*(2-x)/(1-x-2*x^2)^2).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019

Formula

G.f.: x^2*(2-x)/(1-x-2*x^2)^2. [Typo corrected by Colin Barker, Jun 16 2012]
a(n) = Sum_{k=0..n} J(n-k)*(2^(k-1) -(-1)^k +0^k/2).
a(n) = Sum_{k=0..n+1} J(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
a(n) = A036289(n)/6 +(-1)^n*n/3. - R. J. Mathar, Sep 21 2012
a(-n) = (-2)^(-n-1) * A193449(n) for all n in Z. - Michael Somos, Jun 02 2014

A193450 Triangle of a binomial convolution sum related to Jacobsthal numbers.

Original entry on oeis.org

0, 1, 0, 2, 2, 2, 3, 6, 6, 0, 4, 12, 16, 8, 4, 5, 20, 35, 30, 15, 0, 6, 30, 66, 78, 54, 18, 6, 7, 42, 112, 168, 154, 84, 28, 0, 8, 56, 176, 320, 368, 272, 128, 32, 8, 9, 72, 261, 558, 774, 720, 450, 180, 45, 0, 10, 90, 370, 910, 1480, 1660, 1300, 700, 250, 50, 10
Offset: 0

Views

Author

Olivier Gérard, Jul 26 2011

Keywords

Comments

Row sum is A193449(n) = A001045(n+1)*n.

Examples

			Triangle starts:
0;
1, 0;
2, 2, 2;
3, 6, 6, 0;
4, 12, 16, 8, 4;
5, 20, 35, 30, 15, 0;
...
		

Crossrefs

Cf. A193451.

Programs

  • PARI
    T(n,k) = sum(j=0, k, (-1)^j*n*binomial(n-j,k-j)); \\ Michel Marcus, Jun 04 2014

Formula

T(n,k) = sum( (-1)^j*n*C(n-j,k-j), j=0..k).
T(n,k) = n*C(n, k)*2F1( (1, -k); -n )(-1).

A193451 Triangle of a binomial convolution sum related to Jacobsthal numbers.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 0, 5, 8, 2, 0, 7, 17, 14, 6, 0, 9, 30, 39, 24, 3, 0, 11, 47, 83, 75, 33, 9, 0, 13, 68, 152, 184, 126, 48, 4, 0, 15, 93, 252, 384, 354, 198, 60, 12, 0, 17, 122, 389, 716, 830, 620, 290, 80, 5, 0, 19, 155, 569, 1229, 1718, 1610, 1010, 410, 95, 15
Offset: 0

Views

Author

Olivier Gérard, Jul 26 2011

Keywords

Comments

Row sum is A193449(n) = n*A001045(n+1).

Examples

			Triangle starts:
0;
0, 1;
0, 3, 3;
0, 5, 8, 2;
0, 7, 17, 14, 6;
0, 9, 30, 39, 24, 3;
...
		

Crossrefs

Programs

  • PARI
    T(n,k)= sum(j=0, k, (-1)^(j+k)*(j+k)*binomial(n-k+j,j)); \\ Michel Marcus, Jun 04 2014

Formula

T(n,k)= sum( (-1)^(j+k)*(j+k)*C(n-k+j,j), j=0..k).
Showing 1-5 of 5 results.