cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073371 Convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n >= 0, with itself.

Original entry on oeis.org

1, 2, 7, 16, 41, 94, 219, 492, 1101, 2426, 5311, 11528, 24881, 53398, 114083, 242724, 514581, 1087410, 2291335, 4815680, 10097401, 21126862, 44117867, 91963996, 191384541, 397682154, 825190479, 1710033272, 3539371201, 7317351686
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

PSumSIGN transform of A045883(n-1). - Michael Somos, Jul 10 2003
Numbers of the form ((6*m+4)*2^m + (-1)^(m-1)*(3*m+4))/27. - Artur Jasinski, Feb 09 2007
With [0, 0, 0] prepended, this is an "autosequence" of the first kind, whose companion is [0, 0, 2, 3, 12, 25, 66, ...], that is A099429. - Jean-François Alcover, Jul 10 2022

Crossrefs

Second (m=1) column of triangle A073370.

Programs

  • Magma
    [((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27: n in [0..40]]; // G. C. Greubel, Sep 28 2022
    
  • Mathematica
    Table[((6n+4)*2^n + (-1)^(n-1)(3n+4))/27, {n, 100}] (* Artur Jasinski, Feb 09 2007 *)
  • PARI
    a(n) = if(n<-3, 0, ((5+3*n)*2^(n+2)+(7+3*n)*(-1)^n)/27)
    
  • SageMath
    def A073371(n): return ((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27
    [A073371(n) for n in range(40)] # G. C. Greubel, Sep 28 2022

Formula

a(n) = Sum_{k=0..n} b(k) * b(n-k), where b(k) = A001045(k+1).
a(n) = Sum_{k=0..floor(n/2)} (n-k+1) * binomial(n-k, k) * 2^k.
a(n) = ((n+1)*U(n+1) + 4*(n+2)*U(n))/9 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^2.
G.f.: 1/((1+x)*(1-2*x))^2.
a(n) = ((5+3*n)*2^(n+2) + (7+3*n)*(-1)^n)/27.
a(n) = ((6*n+4)*2^(n) + (-1)^(n-1)*(3*n+4))/27. - Artur Jasinski, Feb 09 2007
E.g.f.: (1/27)*(4*(5+6*x)*exp(2*x) + (7-3*x)*exp(-x)). - G. C. Greubel, Sep 28 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007

A245962 Triangle read by rows: T(n,k) is the number of induced subgraphs of the Lucas cube Lambda(n) that are isomorphic to the hypercube Q(k).

Original entry on oeis.org

1, 1, 3, 2, 4, 3, 7, 8, 2, 11, 15, 5, 18, 30, 15, 2, 29, 56, 35, 7, 47, 104, 80, 24, 2, 76, 189, 171, 66, 9, 123, 340, 355, 170, 35, 2, 199, 605, 715, 407, 110, 11, 322, 1068, 1410, 932, 315, 48, 2, 521, 1872, 2730, 2054, 832, 169, 13, 843, 3262, 5208, 4396, 2079, 532, 63, 2
Offset: 0

Views

Author

Emeric Deutsch, Aug 14 2014

Keywords

Comments

Number of entries in row n is 1 + floor(n/2).
The entries in row n are the coefficients of the cube polynomial of the Lucas cube Lambda(n).
For n >= 1, sum of entries in row n = A014551(n) = 2^n + (-1)^n (the Jacobsthal-Lucas numbers).
Sum_{k >= 0} k*T(n,k) = A099429(n).
T(n,0) = A000032(n) (n >= 1; the Lucas numbers); T(n,1) = A099920(n-1); T(n,2) = A245961(n).
As communicated by the authors, Theorem 5.2 and Corollary 5.3 of the Klavzar et al. paper contains a typo: 2nd binomial should be binomial(n - a - 1, a) resp. binomial(n - i - 1, i).

Examples

			Row 4 is 7, 8, 2. Indeed, the Lucas cube Lambda(4) is the graph <><> obtained by identifying a vertex of a square with a vertex of another square; it has 7 vertices (i.e., Q(0)s), 8 edges (i.e., Q(1)s), and 2 squares (i.e., Q(2)s).
Triangle starts:
   1;
   1;
   3,  2;
   4,  3;
   7,  8,  2;
  11, 15,  5;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: add((2*binomial(n-i, i)-binomial(n-i-1, i))*binomial(i, k), i = k .. floor((1/2)*n)) end proc: for n from 0 to 20 do seq(T(n, k), k = 0 .. (1/2)*n) end do; # yields sequence in triangular form
  • Mathematica
    A245962[n_, k_] := Sum[(2*Binomial[n-i, i]-Binomial[n-i-1, i])*Binomial[i, k], {i, k, n/2}]; Table[A245962[n, k], {n, 0, 15}, {k, 0, n/2}] (* Paolo Xausa, Feb 29 2024 *)

Formula

T(n,k) = Sum_{i = k..floor(n/2)} (2*binomial(n - i, i) - binomial(n - i - 1, i))*binomial(i, k).
G.f.: (1+(1+t)*z^2)/(1-z-(1+t)*z^2).
The generating polynomial of row n (i.e., the cube polynomial of Lambda(n)) is Sum_{i = 0..floor(n/2)} (2*binomial(n - i, i) - binomial(n - i - 1))(1+x)^i.
The generating polynomial of row n (i.e., the cube polynomial of Lambda(n)) is ((1+w)/2)^n + ((1-w)/2)^n, where w = sqrt(5 + 4x).
The generating function of column k (k >= 1) is z^(2k)(2-z)/(1-z-z^2)^(k+1).
Showing 1-2 of 2 results.