A073370
Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 5, 7, 3, 1, 11, 16, 12, 4, 1, 21, 41, 34, 18, 5, 1, 43, 94, 99, 60, 25, 6, 1, 85, 219, 261, 195, 95, 33, 7, 1, 171, 492, 678, 576, 340, 140, 42, 8, 1, 341, 1101, 1692, 1644, 1106, 546, 196, 52, 9, 1
Offset: 0
Triangle begins as:
1;
1, 1;
3, 2, 1;
5, 7, 3, 1;
11, 16, 12, 4, 1;
21, 41, 34, 18, 5, 1;
43, 94, 99, 60, 25, 6, 1;
85, 219, 261, 195, 95, 33, 7, 1;
171, 492, 678, 576, 340, 140, 42, 8, 1;
The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 5, 7, 3, 1;
0, 11, 16, 12, 4, 1;
0, 21, 41, 34, 18, 5, 1; - _Philippe Deléham_, Feb 19 2013
-
A073370:= func< n,k | (&+[Binomial(n-j,k)*Binomial(n-k-j,j)*2^j: j in [0..Floor((n-k)/2)]]) >;
[A073370(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 01 2022
-
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> (2^n - (-1)^n) / 3); # Peter Luschny, Oct 07 2022
-
T[n_, k_]:= T[n, k]= Sum[Binomial[n-j,k]*Binomial[n-k-j,j]*2^j, {j,0,Floor[(n- k)/2]}];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 01 2022 *)
-
def A073370(n,k): return binomial(n,k)*sum( 2^j * binomial(2*j,j) * binomial(n-k,2*j)/binomial(n,j) for j in range(1+(n-k)//2))
flatten([[A073370(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 01 2022
A062111
Upper-right triangle resulting from binomial transform calculation for nonnegative integers.
Original entry on oeis.org
0, 1, 1, 4, 3, 2, 12, 8, 5, 3, 32, 20, 12, 7, 4, 80, 48, 28, 16, 9, 5, 192, 112, 64, 36, 20, 11, 6, 448, 256, 144, 80, 44, 24, 13, 7, 1024, 576, 320, 176, 96, 52, 28, 15, 8, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 9, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 10
Offset: 0
As a lower triangle (T(n, k)):
0;
1, 1;
4, 3, 2;
12, 8, 5, 3;
32, 20, 12, 7, 4;
80, 48, 28, 16, 9, 5;
192, 112, 64, 36, 20, 11, 6;
448, 256, 144, 80, 44, 24, 13, 7;
-
[2^(n-k-1)*(n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 28 2022
-
Table[2^(n-k-1)*(n+k), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 28 2022 *)
-
def A062111(n,k): return 2^(n-k-1)*(n+k)
flatten([[A062111(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 28 2022
A127978
a(n) = ((15*n + 34)/54)*2^(n-1) - (-1)^(n-1)*(6*n + 5)/27.
Original entry on oeis.org
3, 5, 15, 31, 75, 163, 367, 799, 1747, 3771, 8119, 17367, 37019, 78579, 166271, 350735, 737891, 1548587, 3242823, 6776903, 14136363, 29437795, 61205775, 127071871, 263464435, 545570203, 1128423127, 2331411639, 4811954107
Offset: 2
- G. C. Greubel, Table of n, a(n) for n = 2..1000
- W. Bosma, Signed bits and fast exponentiation, Journal de Théorie des Nombres de Bordeaux, Vol. 13, Fasc. 1 (2001), p. 38 (Proposition 7).
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4)
-
I:=[3, 5, 15, 31]; [n le 4 select I[n] else 2*Self(n-1) + 3*Self(n-2) -4*Self(n-3) -4*Self(n-4): n in [1..30]]; // G. C. Greubel, May 07 2018
-
Table[((15n+34)/54)2^(n-1) -((-1)^(n-1))(6n+5)/27, {n, 2, 50}]
LinearRecurrence[{2,3,-4,-4}, {3, 5, 15, 31}, 50] (* G. C. Greubel, May 07 2018 *)
-
x='x+O('x^30); Vec(x^2*(3-x-4*x^2-2*x^3)/((1+x)^2*(1-2*x)^2)) \\ G. C. Greubel, May 07 2018
Offset changed from 1 to 2 (according to Bosma's Proposition 5) from
Bruno Berselli, Apr 02 2012
A127979
a(n) = (5*n/18 + 19/54)*2^n - (-1)^(n-1)*(3*n + 4)/27.
Original entry on oeis.org
1, 4, 9, 24, 55, 130, 293, 660, 1459, 3206, 6977, 15096, 32463, 69482, 148061, 314332, 665067, 1402958, 2951545, 6194368, 12971271, 27107634, 56545429, 117751204, 244823075, 508287510, 1053857713, 2182280840, 4513692479, 9325646586
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, Journal de Théorie des Nombres de Bordeaux, Vol. 13, Fasc. 1 (2001), p. 37 (Proposition 5).
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4).
-
[(5*n/18 +19/54)*2^n -(-1)^(n-1)*(3*n+4)/27: n in [1..50]]; // G. C. Greubel, May 08 2018
-
Table[(5n/18 + 19/54)2^(n) - ((-1)^(n - 1) )(3n + 4)/27, {n, 1, 100}]
LinearRecurrence[{2,3,-4,-4}, {1,4,9,24}, 50] (* G. C. Greubel, May 08 2018 *)
-
for(n=1, 50, print1((5*n/18 +19/54)*2^n -(-1)^(n-1)*(3*n+4)/27, ", ")) \\ G. C. Greubel, May 08 2018
A073372
Second convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
Original entry on oeis.org
1, 3, 12, 34, 99, 261, 678, 1692, 4149, 9959, 23568, 55014, 127031, 290457, 658602, 1482240, 3314025, 7365915, 16285300, 35832810, 78500811, 171293293, 372412782, 806963364, 1743173469, 3754782351, 8066319768, 17285917742, 36957928479, 78847115649
Offset: 0
Third (m=2) column of triangle
A073370.
-
[(2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162: n in [0..40]]; // G. C. Greubel, Sep 28 2022
-
CoefficientList[Series[-(-1+x+2x^2)^(-3),{x,0,78}],x] (* or *) Table[(-3*(-1)^n*n^2+3*2^(n+2)*n^2-15*(-1)^n*n+9*2^(n+2)*n-16*(-1)^n+2^(n+4))/162,{n,42}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
-
def A073372(n): return (2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162
[A073372(n) for n in range(40)] # G. C. Greubel, Sep 28 2022
A127980
a(n) = (n + 2/3)*2^(n-1) - 1/2 - (-1)^(n-1)*(1/6).
Original entry on oeis.org
1, 5, 14, 37, 90, 213, 490, 1109, 2474, 5461, 11946, 25941, 55978, 120149, 256682, 546133, 1157802, 2446677, 5155498, 10835285, 22719146, 47535445, 99265194, 206918997, 430615210, 894784853, 1856678570, 3847574869, 7963585194
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, Journal de Théorie des Nombres de Bordeaux, Vol. 13, Fasc. 1 (2001), p. 38 (Proposition 7).
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,4).
-
I:=[1,5,14,37]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)-4*Self(n-3)+4*Self(n-4): n in [1..30]]; // G. C. Greubel, May 08 2018
-
Table[(n+2/3)2^(n-1) - 1/2 -(-1)^(n-1)*(1/6), {n, 1, 50}]
LinearRecurrence[{4,-3,-4,4}, {1,5,14,37}, 50] (* G. C. Greubel, May 08 2018 *)
-
x='x+O('x^30); Vec(x*(1+x-3*x^2)/((1-x)*(1+x)*(1-2*x)^2)) \\ G. C. Greubel, May 08 2018
A127984
a(n) = (n/3 + 7/9)*2^(n - 1) + (-1)^n/9.
Original entry on oeis.org
1, 3, 7, 17, 39, 89, 199, 441, 967, 2105, 4551, 9785, 20935, 44601, 94663, 200249, 422343, 888377, 1864135, 3903033, 8155591, 17010233, 35418567, 73633337, 152859079, 316902969, 656175559, 1357090361, 2803659207, 5786275385, 11930464711, 24576757305
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, J. Th. des Nombres de Bordeaux Vol.13, Fasc. 1, 2001.
- Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
Cf.
A059570,
A073371,
A127976,
A127978,
A127979,
A127980,
A127981,
A127982,
A127983,
A073371,
A000337,
A172481.
-
[(n/3+7/9)*2^(n-1)+(-1)^n/9: n in [1..35]]; // Vincenzo Librandi, Jun 15 2017
-
A127984:=n->(n/3 + 7/9)*2^(n - 1) + (-1)^n/9; seq(A127984(n), n=1..50); # Wesley Ivan Hurt, Mar 14 2014
-
Table[(n/3 + 7/9)2^(n - 1) + (-1)^n/9, {n, 50}] (* Artur Jasinski *)
CoefficientList[Series[(1 - 2 x^2) / ((-1 + 2 x)^2 (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 15 2017 *)
A127981
a(n) = (n + 1/3)*2^(n-1) - 1/2 + (-1)^(n-1)*(1/6).
Original entry on oeis.org
1, 4, 13, 34, 85, 202, 469, 1066, 2389, 5290, 11605, 25258, 54613, 117418, 251221, 535210, 1135957, 2402986, 5068117, 10660522, 22369621, 46836394, 97867093, 204122794, 425022805, 883600042, 1834308949, 3802835626, 7874106709
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, Journal de Théorie des Nombres de Bordeaux, Vol. 13, Fasc. 1 (2001), p. 38 (Proposition 7).
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,4).
-
[(n+1/3)*2^(n-1) -1/2 +(-1)^(n-1)*(1/6): n in [1..50]]; // G. C. Greubel, May 08 2018
-
Table[(n+1/3)*2^(n-1) -1/2 +(-1)^(n-1)*(1/6), {n, 1, 50}]
LinearRecurrence[{4,-3,-4,4}, {1,4,13,34}, 50] (* G. C. Greubel, May 08 2018 *)
-
for(n=1,50, print1((n+1/3)*2^(n-1) -1/2 +(-1)^(n-1)*(1/6), ", ")) \\ G. C. Greubel, May 08 2018
A127982
a(n) = (n - 1/3)*2^n - n/2 + 1/4 + (-1)^n/12.
Original entry on oeis.org
1, 6, 20, 57, 147, 360, 850, 1959, 4433, 9894, 21840, 47781, 103759, 223908, 480590, 1026723, 2184525, 4631202, 9786700, 20621985, 43341131, 90876576, 190141770, 397060767, 827675977, 1722460830, 3579139400, 7426714269, 15390299463
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, J. Th. des Nombres de Bordeaux Vol.13, Fasc. 1, 2001.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,-1,8,-4).
-
[(n-1/3)*2^n -n/2 +1/4 +(-1)^n/12: n in [1..50]]; // G. C. Greubel, May 08 2018
-
Table[(n-1/3)*2^n -n/2 +1/4 +(-1)^n/12, {n, 1, 50}]
LinearRecurrence[{5,-7,-1,8,-4}, {1,6,20,57,147}, 50] (* G. C. Greubel, May 08 2018 *)
-
a(n) = (n-1/3)*2^n -n/2 +1/4 +(-1)^n/12 \\ G. C. Greubel, May 08 2018
A127983
a(n) = (n - 2/3)*2^n - n/2 + 3/4 - (-1)^n/12.
Original entry on oeis.org
1, 5, 18, 52, 137, 339, 808, 1874, 4263, 9553, 21158, 46416, 101029, 218447, 469668, 1004878, 2140835, 4543821, 9611938, 20272460, 42642081, 89478475, 187345568, 391468362, 816491167, 1700091209, 3534400158, 7337235784, 15211342493
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, J. Th. des Nombres de Bordeaux Vol.13, Fasc. 1, 2001.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,-1,8,-4).
-
[(n-2/3)*2^n -n/2 +3/4 -(-1)^n/12: n in [1..50]]; // G. C. Greubel, May 08 2018
-
Table[(n-2/3)*2^n -n/2 +3/4 -(-1)^n/12, {n, 1, 50}]
LinearRecurrence[{5,-7,-1,8,-4}, {1,5,18,52,137}, 50] (* G. C. Greubel, May 08 2018 *)
-
a(n) = (n-2/3)*2^n -n/2 +3/4 -(-1)^n/12 \\ G. C. Greubel, May 08 2018
Showing 1-10 of 15 results.
Comments