A152920 Triangle read by rows: triangle A062111 reversed.
0, 1, 1, 2, 3, 4, 3, 5, 8, 12, 4, 7, 12, 20, 32, 5, 9, 16, 28, 48, 80, 6, 11, 20, 36, 64, 112, 192, 7, 13, 24, 44, 80, 144, 256, 448, 8, 15, 28, 52, 96, 176, 320, 576, 1024, 9, 17, 32, 60, 112, 208, 384, 704, 1280, 2304, 10, 19, 36, 68, 128, 240, 448, 832, 1536, 2816, 5120
Offset: 0
Examples
Triangle starts: 0; 1, 1; 2, 3, 4; 3, 5, 8, 12; 4, 7, 12, 20, 32; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
Crossrefs
Programs
-
Magma
[2^k*(n-k/2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2022
-
Maple
A062111 := proc(n,k) (k+n)*2^(k-n-1) ; end: A152920 := proc(n,k) A062111(n-k,n) ; end: for n from 0 to 15 do for k from 0 to n do printf("%d,",A152920(n,k)) ; od: od: # R. J. Mathar, Jan 22 2009 # second Maple program: T:= proc(n, k) option remember; `if`(k=0, n, T(n, k-1)+T(n-1, k-1)) end: seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 12 2022
-
Mathematica
t[0, k_]:= k; t[n_, k_]:= t[n, k]= t[n-1, k] + t[n-1, k+1]; Table[t[n-k, k], {n,0,10}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Sep 11 2016 *)
-
SageMath
flatten([[2^(k-1)*(2*n-k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 27 2022
Formula
Row sums: (2^n-1)(n+1) = A058877(n). - R. J. Mathar, Jan 22 2009
T(2n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 20 2009
From Werner Schulte, Jul 31 2020: (Start)
T(n, k) = (2*n-k) * 2^(k-1) for 0 <= k <= n.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = t*(1+x-3*x*t) / ((1-t)^2 * (1-2*x*t)^2).
Sum_{k=0..n} (-1)^k * binomial(n,k) * T(n,k) = 0 for n >= 0.
Sum_{k=0..n} binomial(n,k) * T(n,k) = 2*n * 3^(n-1) for n >= 0.
Define the array B(n,p) = (Sum_{k=0..n} binomial(p+k,p) * T(n,k))/(n+p+1) for n >= 0 and p >= 0. Then see the comment of Robert Coquereaux (2014) at A193844. Conjecture: B(n+1,p) = A(n,p). (End)
T(n, k) = T(n, k-1) + T(n-1, k-1) for k>=1, T(n,0) = n. - Alois P. Heinz, Sep 12 2022
From G. C. Greubel, Sep 27 2022: (Start)
T(n, n-1) = A001792(n).
T(2*n-1, n-1) = A053220(n).
T(2*n+1, n-1) = 3*A001792(n).
T(m*n, n) = (2*m-1)*A001787(n), for m >= 1. (End)
Extensions
Edited by N. J. A. Sloane, Dec 19 2008
More terms from R. J. Mathar, Jan 22 2009
Comments