A003024 Number of acyclic digraphs (or DAGs) with n labeled nodes.
1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, 1213442454842881, 4175098976430598143, 31603459396418917607425, 521939651343829405020504063, 18676600744432035186664816926721, 1439428141044398334941790719839535103, 237725265553410354992180218286376719253505
Offset: 0
Examples
For n = 2 the three (0,1)-matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
References
- Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 310.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, Eq. (1.6.1).
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P Stanley, Enumerative Combinatorics I, 2nd. ed., p. 322.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..77 (first 41 terms from T. D. Noe)
- T. E. Allen, J. Goldsmith, and N. Mattei, Counting, Ranking, and Randomly Generating CP-nets, 2014.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
- Eunice Y.-J. Chen, A. Choi, and A. Darwiche, On Pruning with the MDL Score, JMLR: Workshop and Conference Proceedings vol 52, 98-109, 2016.
- S. Engstrom, Random acyclic orientations of graphs, Master's thesis written at the department of Mathematics at the Royal Institute of Technology (KTH) in Stockholm, Jan. 2013.
- Zehao Jin, Mario Pasquato, Benjamin L. Davis, Tristan Deleu, Yu Luo, Changhyun Cho, Pablo Lemos, Laurence Perreault-Levasseur, Yoshua Bengio, Xi Kang, Andrea Valerio Maccio, and Yashar Hezaveh, A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution, arXiv:2410.00965 [astro-ph.GA], 2024. See p. 33.
- Zehao Jin, Mario Pasquato, Benjamin L. Davis, Andrea V. Macciò, and Yashar Hezaveh, Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis, arXiv:2410.14775 [astro-ph.GA], 2024. See pp. 2, 4, 10.
- Zehao Jin, Mario Pasquato, Benjamin L. Davis, Tristan Deleu, Yu Luo, Changhyun Cho, Pablo Lemos, Laurence Perreault-Levasseur, Yoshua Bengio, and Xi Kang, Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution, Astrophys. J. (2025) Vol. 979, 212. See 4.1.
- P. L. Krapivsky, Hiring Strategies, arXiv:2412.10490 [cs.GT], 2024. See p. 12.
- Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See p. 33.
- Jack Kuipers and Giusi Moffa, Uniform generation of random acyclic digraphs, arXiv preprint arXiv:1202.6590 [stat.CO], 2012. - _N. J. A. Sloane_, Sep 14 2012
- Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Songtao Guo, and Yuanyuan Yang, A Survey of IoT Applications in Blockchain Systems: Architecture, Consensus and Traffic Modeling, ACM Computing Surveys (CSUR, 2020) Vol. 53, No. 1, Article No. 18.
- Tobias Ellegaard Larsen, Claus Thorn Ekstrøm, and Anne Helby Petersen, Score-Based Causal Discovery with Temporal Background Information, arXiv:2502.06232 [stat.ME], 2025. See p. 9.
- Daniel Mallia, Towards an Unsupervised Bayesian Network Pipeline for Explainable Prediction, Decision Making and Discovery, Master's Thesis, CUNY Hunter College (2023).
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, J. Integer Sequences, 7 (2004), #04.3.3.
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, arXiv:math/0310423 [math.CO], Oct 28 2003.
- A. Motzek and R. Möller, Exploiting Innocuousness in Bayesian Networks, Preprint 2015.
- Yisu Peng, Y. Jiang, and P. Radivojac, Enumerating consistent subgraphs of directed acyclic graphs: an insight into biomedical ontologies, arXiv preprint arXiv:1712.09679 [cs.DS], 2017.
- J. Peters, J. Mooij, D. Janzing, and B. Schölkopf, Causal Discovery with Continuous Additive Noise Models, arXiv preprint arXiv:1309.6779 [stat.ML], 2013.
- R. W. Robinson, Enumeration of acyclic digraphs, Manuscript. (Annotated scanned copy)
- V. I. Rodionov, On the number of labeled acyclic digraphs, Disc. Math. 105 (1-3) (1992) 319-321
- I. Shpitser, T. S. Richardson, J. M. Robins and R. Evans, Parameter and Structure Learning in Nested Markov Models, arXiv preprint arXiv:1207.5058 [stat.ML], 2012.
- I. Shpitser, R. J. Evans, T. S. Richardson, and J. M. Robins, Introduction to nested Markov models, Behaviormetrika, Behaviormetrika Vol. 41, No. 1, 2014, 3-39.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Christian Toth, Christian Knoll, Franz Pernkopf, and Robert Peharz, Rao-Blackwellising Bayesian Causal Inference, arXiv:2402.14781 [cs.LG], 2024.
- Sumanth Varambally, Yi-An Ma, and Rose Yu, Discovering Mixtures of Structural Causal Models from Time Series Data, arXiv:2310.06312 [cs.LG], 2023.
- S. Wagner, Asymptotic enumeration of extensional acyclic digraphs, in Proceedings of the SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO12).
- Daniel Waxman, Kurt Butler, and Petar M. Djuric, Dagma-DCE: Interpretable, Non-Parametric Differentiable Causal Discovery, arXiv:2401.02930 [cs.LG], 2024.
- Eric Weisstein's World of Mathematics, (0,1)-Matrix
- Eric Weisstein's World of Mathematics, Acyclic Digraph
- Eric Weisstein's World of Mathematics, Positive Eigenvalued Matrix
- Eric Weisstein's World of Mathematics, Weisstein's Conjecture
- Jun Wu and Mathias Drton, Partial Homoscedasticity in Causal Discovery with Linear Models, arXiv:2308.08959 [math.ST], 2023.
- Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019.
- Index entries for sequences related to binary matrices
Crossrefs
Cf. A055165, which counts nonsingular {0, 1} matrices and A085656, which counts positive definite {0, 1} matrices.
For a unique sink we have A003025.
The unlabeled version is A003087.
These are the reverse-alternating sums of rows of A046860.
The weakly connected case is A082402.
A reciprocal version is A334282.
Row sums of A361718.
Programs
-
Maple
p:=evalf(solve(sum((-1)^n*x^n/(n!*2^(n*(n-1)/2)), n=0..infinity) = 0, x), 50); M:=evalf(sum((-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)), n=1..infinity), 40); # program for evaluation of constants p and M in the asymptotic formula, Vaclav Kotesovec, Dec 09 2013
-
Mathematica
a[0] = a[1] = 1; a[n_] := a[n] = Sum[ -(-1)^k * Binomial[n, k] * 2^(k*(n-k)) * a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 13}](* Jean-François Alcover, May 21 2012, after PARI *) Table[2^(n*(n-1)/2)*n! * SeriesCoefficient[1/Sum[(-1)^k*x^k/k!/2^(k*(k-1)/2),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 19 2015 *) Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,5}] (* Gus Wiseman, Jan 01 2024 *)
-
PARI
a(n)=if(n<1,n==0,sum(k=1,n,-(-1)^k*binomial(n,k)*2^(k*(n-k))*a(n-k)))
-
PARI
{a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Oct 17 2009
Formula
a(0) = 1; for n > 0, a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*2^(k*(n-k))*a(n-k).
1 = Sum_{n>=0} a(n)*exp(-2^n*x)*x^n/n!. - Vladeta Jovovic, Jun 05 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*A046860(n,k) = Sum_{k=1..n} (-1)^(n-k)*k!*A058843(n,k). - Vladeta Jovovic, Jun 20 2008
1 = Sum_{n=>0} a(n)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Oct 17 2009
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 2^n*x)^(n+m) for m>=1. - Paul D. Hanna, Apr 01 2011
log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 2^n*x)^n. - Paul D. Hanna, Apr 01 2011
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/E(-x) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + x + 3*x^2/(2!*2) + 25*x^3/(3!*2^3) + 543*x^4/(4!*2^6) + ... (Stanley). Cf. A188457. - Peter Bala, Apr 01 2013
a(n) ~ n!*2^(n*(n-1)/2)/(M*p^n), where p = 1.488078545599710294656246... is the root of the equation Sum_{n>=0} (-1)^n*p^n/(n!*2^(n*(n-1)/2)) = 0, and M = Sum_{n>=1} (-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)) = 0.57436237330931147691667... Both references to the article "Acyclic digraphs and eigenvalues of (0,1)-matrices" give the wrong value M=0.474! - Vaclav Kotesovec, Dec 09 2013 [Response from N. J. A. Sloane, Dec 11 2013: The value 0.474 has a typo, it should have been 0.574. The value was taken from Stanley's 1973 paper.]
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 + ... appears to have integer coefficients (cf. A188490). - Peter Bala, Jan 14 2016
Comments