cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A058877 Number of labeled acyclic digraphs with n nodes containing exactly n-1 points of in-degree zero.

Original entry on oeis.org

0, 2, 9, 28, 75, 186, 441, 1016, 2295, 5110, 11253, 24564, 53235, 114674, 245745, 524272, 1114095, 2359278, 4980717, 10485740, 22020075, 46137322, 96468969, 201326568, 419430375, 872415206, 1811939301, 3758096356, 7784628195, 16106127330, 33285996513
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

Convolution of 2^n+1 (A000051) and 2^n-1 (A000225). - Graeme McRae, Jun 07 2006
Let Q be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all nonempty elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |Q|. - Ross La Haye, Feb 20 2008, Oct 21 2008
Also: convolution of A006589 with A000012 (i.e., partial sums of A006589). - R. J. Mathar, Jan 25 2009
The La Haye binary relation Q is more clearly stated as x is nonempty and y has one more element than x. If x is a k-set than the number of such pairs is binomial( n, k) * (n-k). - Michael Somos, Mar 29 2012
Select one of the n nodes of the digraph and select a nonempty subset of the rest to connect to the selected node. This can be done in n * (2^(n-1) - 1) ways. - Michael Somos, Mar 29 2012
Column 1 of A198204. - Peter Bala, Aug 01 2012
a(n) is the number of ternary sequences of length n that contain one 0 and at least one 1. For example, a(3)=9 since the sequences are the 3 permutations of 011 and the 6 permutations of 012. - Enrique Navarrete, Apr 05 2021
a(n) is also the number of multiplications required to compute the permanent of general n X n matrices using canonical trellis method (see Theorem 5, p. 10 in Kiah et al.). - Stefano Spezia, Nov 02 2021

Examples

			G.f. = 2*x^2 + 9*x^3 + 28*x^4 + 75*x^5 + 186*x^6 + 441*x^7 + 1016*x^8 + ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
  • Gerta Rucker and Christoph Rucker, "Walk counts, Labyrinthicity and complexity of acyclic and cyclic graphs and molecules", J. Chem. Inf. Comput. Sci., 40 (2000), 99-106. See Table 1 on page 101. [From Parthasarathy Nambi, Sep 26 2008]

Crossrefs

Second column of A058876. Cf. A003025, A003026.
Column k=1 of A133399.
Cf. A198204.

Programs

Formula

a(n+1) = (n+1)*2^n - n - 1 = Sum_{j=0..n} (n+j)*2^(n-j-1) = A048493(n)-1 = Column sum of A062111. - Henry Bottomley, May 30 2001
From R. J. Mathar, Jan 25 2009: (Start)
G.f.: x^2*(2-3*x)/((1-2*x)*(1-x))^2.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4). (End)
a(n) = Sum_{k=1..n-1} binomial(n, k) * (n-k). - Michael Somos, Mar 29 2012
E.g.f: x*exp(x)*(exp(x)-1). - Enrique Navarrete, Apr 05 2021

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A003025 Number of n-node labeled acyclic digraphs with 1 out-point.

Original entry on oeis.org

1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1

Views

Author

Keywords

Comments

From Gus Wiseman, Jan 02 2024: (Start)
Also the number of n-element sets of finite nonempty subsets of {1..n}, including a unique singleton, such that there is exactly one way to choose a different element from each. For example, the a(0) = 0 through a(3) = 15 set-systems are:
. {{1}} {{1},{1,2}} {{1},{1,2},{1,3}}
{{2},{1,2}} {{1},{1,2},{2,3}}
{{1},{1,3},{2,3}}
{{2},{1,2},{1,3}}
{{2},{1,2},{2,3}}
{{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
These set-systems are all connected.
The case of labeled graphs is A000169.
(End)

Examples

			a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
		

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058876.
Row sums of A350487.
The unlabeled version is A350415.
Column k=1 of A361718.
For any number of sinks we have A003024, unlabeled A003087.
For n-1 sinks we have A058877.
For a fixed sink we have A134531 (up to sign), column k=1 of A368602.

Programs

Formula

a(n) = (-1)^(n-1) * n * A134531(n). - Gus Wiseman, Jan 02 2024

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A122078 Triangle read by rows: T(n,k) is the number of unlabeled acyclic digraphs with n >= 0 nodes and n-k outnodes (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 11, 16, 0, 1, 4, 25, 108, 164, 0, 1, 5, 47, 422, 2168, 3341, 0, 1, 6, 78, 1251, 15484, 88747, 138101, 0, 1, 7, 120, 3124, 79836, 1215783, 7409117, 11578037, 0, 1, 8, 174, 6925, 333004, 11620961, 199203464, 1252610909, 1961162564, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2006

Keywords

Examples

			Triangle T(n,k) begins:
  1:
  1, 0;
  1, 1,  0;
  1, 2,  3,    0;
  1, 3, 11,   16,     0;
  1, 4, 25,  108,   164,     0;
  1, 5, 47,  422,  2168,  3341,      0;
  1, 6, 78, 1251, 15484, 88747, 138101, 0;
  ...
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A003087.
Diagonals include A000007, A350415.
Cf. A058876 (labeled case), A350447, A350448, A350449, A350450.

Programs

  • PARI
    \\ See link for program code.
    { my(T=AcyclicDigraphsByNonSources(8)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 31 2021

Extensions

Zero terms inserted by Andrew Howroyd, Dec 29 2021

A003026 Number of n-node labeled acyclic digraphs with 2 out-points.

Original entry on oeis.org

1, 9, 198, 10710, 1384335, 416990763, 286992935964, 444374705175516, 1528973599758889005, 11573608032229769067465, 191141381932394665770442818, 6839625961762363728765713227698
Offset: 2

Views

Author

Keywords

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058876.
Cf. A003025.

Programs

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 02 2023

Keywords

Comments

Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}} {{1},{2},{1,2,3}}
{{3},{1,2},{2,3}} {{1},{3},{1,2,3}}
{{3},{1,3},{2,3}} {{2},{3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,    15,     9,    1;
  0,   316,   198,   28,  1;
  0, 16885, 10710, 1610, 75, 1;
  ...
		

Crossrefs

Cf. A058876 (mirror), A361579, A224069.
Row-sums are A003024, unlabeled A003087.
Column k = 1 is A003025(n) = |n*A134531(n)|.
Column k = n-1 is A058877.
For fixed sinks we get A368602.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
    nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]

Formula

T(n,k) = A368602(n,k) * binomial(n,k). - Gus Wiseman, Jan 03 2024

A060335 Number of n-node labeled acyclic digraphs with 3 out-points.

Original entry on oeis.org

1, 28, 1610, 211820, 64144675, 44218682312, 68501035223124, 235728863806525320, 1784437537982029455525, 29470895991194487015464740, 1054563682428338672254476697886, 81276604641664521211218527866093204
Offset: 3

Views

Author

Vladeta Jovovic, Apr 10 2001

Keywords

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.

Crossrefs

A diagonal of A058876.

Programs

A060337 Number of labeled acyclic digraphs with n nodes containing exactly n-2 points of in-degree zero.

Original entry on oeis.org

15, 198, 1610, 10575, 61845, 336924, 1751076, 8801325, 43141175, 207347778, 980828238, 4578689115, 21135851625, 96628899960, 438068838536, 1971349880985, 8813183238315, 39169902510270, 173172640973010
Offset: 3

Views

Author

Vladeta Jovovic, Apr 10 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.

Crossrefs

Third column of A058876.

Programs

  • Mathematica
    LinearRecurrence[{21,-189,955,-2982,5964,-7640,6048,-2688,512},{15,198,1610,10575,61845,336924,1751076,8801325,43141175},20] (* Harvey P. Dale, Mar 23 2022 *)
  • PARI
    \\ requires A058876.
    my(T=A058876(25)); vector(#T-2, n, T[n+2][n]) \\ Andrew Howroyd, Dec 27 2021

Formula

G.f.: x^3*(15 - 117*x + 287*x^2 - 138*x^3 - 300*x^4 + 280*x^5)/((1 - x)*(1 - 2*x)*(1 - 4*x))^3. - Andrew Howroyd, Dec 27 2021
Showing 1-7 of 7 results.