A058877
Number of labeled acyclic digraphs with n nodes containing exactly n-1 points of in-degree zero.
Original entry on oeis.org
0, 2, 9, 28, 75, 186, 441, 1016, 2295, 5110, 11253, 24564, 53235, 114674, 245745, 524272, 1114095, 2359278, 4980717, 10485740, 22020075, 46137322, 96468969, 201326568, 419430375, 872415206, 1811939301, 3758096356, 7784628195, 16106127330, 33285996513
Offset: 1
G.f. = 2*x^2 + 9*x^3 + 28*x^4 + 75*x^5 + 186*x^6 + 441*x^7 + 1016*x^8 + ...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
- Gerta Rucker and Christoph Rucker, "Walk counts, Labyrinthicity and complexity of acyclic and cyclic graphs and molecules", J. Chem. Inf. Comput. Sci., 40 (2000), 99-106. See Table 1 on page 101. [From Parthasarathy Nambi, Sep 26 2008]
- Vincenzo Librandi, Table of n, a(n) for n = 1..2001
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 12.
- Han Mao Kiah, Alexander Vardy and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021.
- Tamás Szakács, Convolution of second order linear recursive sequences. II. Commun. Math. 25, No. 2, 137-148 (2017), remark 3.
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 36.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
-
[(n+1)*2^n-n-1: n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
-
[seq (stirling2(n,2)*n,n=1..29)]; # Zerinvary Lajos, Dec 06 2006
a:=n->sum(k*binomial(n,k), k=2..n): seq(a(n), n=1..29); # Zerinvary Lajos, May 08 2007
-
Table[(n+1)*2^n-n-1, {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 30 2011 *)
a[ n_] := Sum[ Binomial[ n, k] (n - k), {k, n-1}]; (* Michael Somos, Mar 29 2012 *)
-
{a(n) = if( n<1, 0, n * (2^(n-1) - 1))} /* Michael Somos, Mar 29 2012 */
-
[stirling_number2(i,2)*i for i in range(1,26)] # Zerinvary Lajos, Jun 27 2008
-
[(n+1)*gaussian_binomial(n,1,2) for n in range(0,29)] # Zerinvary Lajos, May 31 2009
A003025
Number of n-node labeled acyclic digraphs with 1 out-point.
Original entry on oeis.org
1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1
a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Count[#,{}]==1&&Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,4}] (* _Gus Wiseman, Jan 02 2024 *)
-
\\ requires A058876.
my(T=A058876(20)); vector(#T, n, T[n][1]) \\ Andrew Howroyd, Dec 27 2021
-
\\ see Marcel et al. link (formula for a').
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * (2^(n-k)-1)^k * a[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
A058876
Triangle read by rows: T(n,k) = number of labeled acyclic digraphs with n nodes, containing exactly n+1-k points of in-degree zero (n >= 1, 1<=k<=n).
Original entry on oeis.org
1, 1, 2, 1, 9, 15, 1, 28, 198, 316, 1, 75, 1610, 10710, 16885, 1, 186, 10575, 211820, 1384335, 2174586, 1, 441, 61845, 3268125, 64144675, 416990763, 654313415, 1, 1016, 336924, 43832264, 2266772550, 44218682312, 286992935964, 450179768312
Offset: 1
Triangle begins:
1;
1, 2;
1, 9, 15;
1, 28, 198, 316;
1, 75, 1610, 10710, 16885;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
-
a[p_, k_] :=a[p, k] =If[p == k, 1, Sum[Binomial[p, k]*a[p - k, n]*(2^k - 1)^n*2^(k (p - k - n)), {n,1, p - k}]];
Map[Reverse, Table[Table[a[p, k], {k, 1, p}], {p, 1, 6}]] // Grid (* Geoffrey Critzer, Aug 29 2016 *)
-
A058876(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, 2^(i*(#u-j))*(2^i-1)^j*binomial(n,i)*u[j])))); v}
{ my(T=A058876(10)); for(n=1, #T, print(Vecrev(T[n]))) } \\ Andrew Howroyd, Dec 27 2021
A060335
Number of n-node labeled acyclic digraphs with 3 out-points.
Original entry on oeis.org
1, 28, 1610, 211820, 64144675, 44218682312, 68501035223124, 235728863806525320, 1784437537982029455525, 29470895991194487015464740, 1054563682428338672254476697886, 81276604641664521211218527866093204
Offset: 3
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
A060337
Number of labeled acyclic digraphs with n nodes containing exactly n-2 points of in-degree zero.
Original entry on oeis.org
15, 198, 1610, 10575, 61845, 336924, 1751076, 8801325, 43141175, 207347778, 980828238, 4578689115, 21135851625, 96628899960, 438068838536, 1971349880985, 8813183238315, 39169902510270, 173172640973010
Offset: 3
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- Andrew Howroyd, Table of n, a(n) for n = 3..500
- Index entries for linear recurrences with constant coefficients, signature (21,-189,955,-2982,5964,-7640,6048,-2688,512).
-
LinearRecurrence[{21,-189,955,-2982,5964,-7640,6048,-2688,512},{15,198,1610,10575,61845,336924,1751076,8801325,43141175},20] (* Harvey P. Dale, Mar 23 2022 *)
-
\\ requires A058876.
my(T=A058876(25)); vector(#T-2, n, T[n+2][n]) \\ Andrew Howroyd, Dec 27 2021
Showing 1-5 of 5 results.
Comments