cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A003087 Number of acyclic digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 6, 31, 302, 5984, 243668, 20286025, 3424938010, 1165948612902, 797561675349580, 1094026876269892596, 3005847365735456265830, 16530851611091131512031070, 181908117707763484218885361402
Offset: 0

Views

Author

Keywords

Comments

Also the number of equivalence classes of n X n real (0,1)-matrices with all eigenvalues positive, up to conjugation by permutations.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 194.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003024 (the labeled case), A082402, A101228 (weakly connected, inverse Euler Trans).
Rows sums of A122078, A350447, A350448.

A350415 Number of acyclic digraphs on n unlabeled nodes with a global source (or sink).

Original entry on oeis.org

1, 1, 3, 16, 164, 3341, 138101, 11578037, 1961162564, 668678055847, 457751797355605, 628137837068751147, 1726130748679532455689, 9493834992383031007906911, 104476428350838383854529661007, 2299979227717819421763629684068904
Offset: 1

Views

Author

Andrew Howroyd, Dec 29 2021

Keywords

Comments

A local source (also called an out-node) is a node whose in-degree is zero. In the case of an acyclic digraph with only one local source, the source is also a global source.

Crossrefs

The labeled case is A003025.
Row sums of A350488.
A diagonal of A122078.

Programs

A350449 Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n unlabeled nodes with k arcs, n >= 1, k = 0..(n-1)*n/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 8, 9, 6, 1, 0, 0, 0, 0, 27, 54, 79, 63, 33, 10, 1, 0, 0, 0, 0, 0, 91, 320, 732, 1136, 1281, 1056, 649, 281, 85, 15, 1, 0, 0, 0, 0, 0, 0, 350, 1788, 6012, 14378, 26529, 38407, 44621, 41638, 31321, 18843, 8983, 3325, 920, 180, 21, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 3, 1;
  [4] 0, 0, 0, 8,  9,  6,  1;
  [5] 0, 0, 0, 0, 27, 54, 79, 63, 33, 10, 1;
  ...
		

Crossrefs

Row sums are A101228.
Columns sums are A350451.
Leading diagonal is A000238.
Cf. A350447 (not necessarily connected), A350450 (transpose).

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=WeakAcyclicDigraphsByArcs(6)); for(n=1, #T, print(T[n])) }

A058876 Triangle read by rows: T(n,k) = number of labeled acyclic digraphs with n nodes, containing exactly n+1-k points of in-degree zero (n >= 1, 1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 9, 15, 1, 28, 198, 316, 1, 75, 1610, 10710, 16885, 1, 186, 10575, 211820, 1384335, 2174586, 1, 441, 61845, 3268125, 64144675, 416990763, 654313415, 1, 1016, 336924, 43832264, 2266772550, 44218682312, 286992935964, 450179768312
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Examples

			Triangle begins:
  1;
  1,  2;
  1,  9,   15;
  1, 28,  198,   316;
  1, 75, 1610, 10710, 16885;
  ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.

Crossrefs

Columns give A058877, A060337.
Diagonals give A003025, A003026, A060335.
Row sums give A003024.
Cf. A122078 (unlabeled case).

Programs

  • Mathematica
    a[p_, k_] :=a[p, k] =If[p == k, 1, Sum[Binomial[p, k]*a[p - k, n]*(2^k - 1)^n*2^(k (p - k - n)), {n,1, p - k}]];
    Map[Reverse, Table[Table[a[p, k], {k, 1, p}], {p, 1, 6}]] // Grid (* Geoffrey Critzer, Aug 29 2016 *)
  • PARI
    A058876(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, 2^(i*(#u-j))*(2^i-1)^j*binomial(n,i)*u[j])))); v}
    { my(T=A058876(10)); for(n=1, #T, print(Vecrev(T[n]))) } \\ Andrew Howroyd, Dec 27 2021

Formula

Harary and Prins (following Robinson) give a recurrence.

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A345258 Number of acyclic digraphs (or DAGs) on n unlabeled vertices with one source and one sink.

Original entry on oeis.org

1, 1, 2, 10, 98, 1960, 80176, 6686760, 1129588960, 384610774696, 263104175114712, 360908867732030980, 991603865814038728388, 5453395569997436383751204, 60010050181461052836515513108, 1321051495313052133670927704328040, 58170762510305449187073353930875222256
Offset: 1

Views

Author

Max Alekseyev, Jun 12 2021

Keywords

Crossrefs

Row sums of A350491.
The labeled version is A165950.

Programs

Extensions

a(9) from Brendan McKay.
Terms a(10) and beyond from Mikhail Tikhomirov, Jun 16 2021

A350450 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected acyclic digraphs with n arcs and k vertices, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 1, 8, 0, 0, 0, 9, 27, 0, 0, 0, 6, 54, 91, 0, 0, 0, 1, 79, 320, 350, 0, 0, 0, 0, 63, 732, 1788, 1376, 0, 0, 0, 0, 33, 1136, 6012, 9933, 5743, 0, 0, 0, 0, 10, 1281, 14378, 45225, 54502, 24635, 0, 0, 0, 0, 1, 1056, 26529, 151848, 322736, 298250, 108968
Offset: 0

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 3;
  0, 0, 1, 8;
  0, 0, 0, 9, 27;
  0, 0, 0, 6, 54,   91;
  0, 0, 0, 1, 79,  320,  350;
  0, 0, 0, 0, 63,  732, 1788, 1376;
  0, 0, 0, 0, 33, 1136, 6012, 9933, 5743;
  ...
		

Crossrefs

Main diagonal is A000238.
Row sums are A350451.
Column sums are A101228.
Cf. A122078, A350449 (transpose).

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=WeakAcyclicDigraphsTr(10)); for(n=1, #T, print(T[n])); }

A350447 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n unlabeled nodes with k arcs, n >=0, k = 0..(n-1)*n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 9, 9, 6, 1, 1, 1, 4, 12, 37, 60, 80, 63, 33, 10, 1, 1, 1, 4, 13, 51, 163, 407, 796, 1169, 1291, 1057, 649, 281, 85, 15, 1, 1, 1, 4, 13, 54, 215, 846, 2690, 7253, 15703, 27596, 39057, 44902, 41723, 31336, 18844, 8983, 3325, 920, 180, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1;
  [2] 1, 1;
  [3] 1, 1, 3,  1;
  [4] 1, 1, 4,  9,  9,  6,  1;
  [5] 1, 1, 4, 12, 37, 60, 80, 63, 33, 10, 1;
  ...
		

Crossrefs

The labeled version is A081064.
Row sums are A003087.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=AcyclicDigraphsByArcs(6)); for(n=1, #T, print(T[n])) }

A350451 Number of weakly connected acyclic digraphs with n arcs.

Original entry on oeis.org

1, 1, 3, 9, 36, 151, 750, 3959, 22857, 140031, 909388, 6202031, 44256875, 328994157, 2540242646, 20317980102, 167980915848, 1432808198569, 12587788263807, 113739153822878, 1055610955120803, 10051265993496814, 98083750658261085, 979961276867802001, 10015362142357613001
Offset: 0

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Crossrefs

Row sums of A350450.
Column sums of A350449.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=WeakAcyclicDigraphsTr(15)); vector(#T, n, vecsum(T[n])) }

A350488 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n unlabeled nodes with k arcs and a global source, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 4, 6, 5, 1, 0, 0, 0, 0, 9, 25, 47, 46, 27, 9, 1, 0, 0, 0, 0, 0, 20, 95, 297, 582, 783, 738, 501, 235, 75, 14, 1, 0, 0, 0, 0, 0, 0, 48, 337, 1575, 4941, 11295, 19404, 25847, 26966, 22195, 14380, 7280, 2831, 816, 165, 20, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 01 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 2, 1;
  [4] 0, 0, 0, 4, 6,  5,  1;
  [5] 0, 0, 0, 0, 9, 25, 47, 46, 27, 9, 1;
  [6] 0, 0, 0, 0, 0, 20, 95, 297, 582, 783, 738, 501, 235, 75, 14, 1;
  ...
		

Crossrefs

Row sums are A350415.
Column sums are A350490.
Leading diagonal is A000081.
The labeled version is A350487.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(A=A350488rows(7)); for(i=1, #A, print(A[i])) }

A350491 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n unlabeled nodes with k arcs and a global source and sink, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 1, 9, 25, 32, 22, 8, 1, 0, 0, 0, 0, 0, 1, 17, 92, 259, 441, 496, 379, 195, 66, 13, 1, 0, 0, 0, 0, 0, 0, 1, 28, 259, 1286, 4026, 8754, 13930, 16686, 15289, 10785, 5842, 2397, 722, 151, 19, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 08 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 1, 1;
  [4] 0, 0, 0, 1, 4, 4,  1;
  [5] 0, 0, 0, 0, 1, 9, 25, 32,  22,   8,   1;
  [6] 0, 0, 0, 0, 0, 1, 17, 92, 259, 441, 496, 379, 195, 66, 13, 1;
  ...
		

Crossrefs

Row sums are A345258.
Column sums are A350492.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(A=A350491rows(7)); for(i=1, #A, print(A[i])) }
Showing 1-10 of 13 results. Next