cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003087 Number of acyclic digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 6, 31, 302, 5984, 243668, 20286025, 3424938010, 1165948612902, 797561675349580, 1094026876269892596, 3005847365735456265830, 16530851611091131512031070, 181908117707763484218885361402
Offset: 0

Views

Author

Keywords

Comments

Also the number of equivalence classes of n X n real (0,1)-matrices with all eigenvalues positive, up to conjugation by permutations.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 194.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003024 (the labeled case), A082402, A101228 (weakly connected, inverse Euler Trans).
Rows sums of A122078, A350447, A350448.

A122078 Triangle read by rows: T(n,k) is the number of unlabeled acyclic digraphs with n >= 0 nodes and n-k outnodes (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 11, 16, 0, 1, 4, 25, 108, 164, 0, 1, 5, 47, 422, 2168, 3341, 0, 1, 6, 78, 1251, 15484, 88747, 138101, 0, 1, 7, 120, 3124, 79836, 1215783, 7409117, 11578037, 0, 1, 8, 174, 6925, 333004, 11620961, 199203464, 1252610909, 1961162564, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2006

Keywords

Examples

			Triangle T(n,k) begins:
  1:
  1, 0;
  1, 1,  0;
  1, 2,  3,    0;
  1, 3, 11,   16,     0;
  1, 4, 25,  108,   164,     0;
  1, 5, 47,  422,  2168,  3341,      0;
  1, 6, 78, 1251, 15484, 88747, 138101, 0;
  ...
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A003087.
Diagonals include A000007, A350415.
Cf. A058876 (labeled case), A350447, A350448, A350449, A350450.

Programs

  • PARI
    \\ See link for program code.
    { my(T=AcyclicDigraphsByNonSources(8)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 31 2021

Extensions

Zero terms inserted by Andrew Howroyd, Dec 29 2021

A350449 Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n unlabeled nodes with k arcs, n >= 1, k = 0..(n-1)*n/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 8, 9, 6, 1, 0, 0, 0, 0, 27, 54, 79, 63, 33, 10, 1, 0, 0, 0, 0, 0, 91, 320, 732, 1136, 1281, 1056, 649, 281, 85, 15, 1, 0, 0, 0, 0, 0, 0, 350, 1788, 6012, 14378, 26529, 38407, 44621, 41638, 31321, 18843, 8983, 3325, 920, 180, 21, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 3, 1;
  [4] 0, 0, 0, 8,  9,  6,  1;
  [5] 0, 0, 0, 0, 27, 54, 79, 63, 33, 10, 1;
  ...
		

Crossrefs

Row sums are A101228.
Columns sums are A350451.
Leading diagonal is A000238.
Cf. A350447 (not necessarily connected), A350450 (transpose).

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=WeakAcyclicDigraphsByArcs(6)); for(n=1, #T, print(T[n])) }

A350488 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n unlabeled nodes with k arcs and a global source, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 4, 6, 5, 1, 0, 0, 0, 0, 9, 25, 47, 46, 27, 9, 1, 0, 0, 0, 0, 0, 20, 95, 297, 582, 783, 738, 501, 235, 75, 14, 1, 0, 0, 0, 0, 0, 0, 48, 337, 1575, 4941, 11295, 19404, 25847, 26966, 22195, 14380, 7280, 2831, 816, 165, 20, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 01 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 2, 1;
  [4] 0, 0, 0, 4, 6,  5,  1;
  [5] 0, 0, 0, 0, 9, 25, 47, 46, 27, 9, 1;
  [6] 0, 0, 0, 0, 0, 20, 95, 297, 582, 783, 738, 501, 235, 75, 14, 1;
  ...
		

Crossrefs

Row sums are A350415.
Column sums are A350490.
Leading diagonal is A000081.
The labeled version is A350487.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(A=A350488rows(7)); for(i=1, #A, print(A[i])) }

A350491 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n unlabeled nodes with k arcs and a global source and sink, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 1, 9, 25, 32, 22, 8, 1, 0, 0, 0, 0, 0, 1, 17, 92, 259, 441, 496, 379, 195, 66, 13, 1, 0, 0, 0, 0, 0, 0, 1, 28, 259, 1286, 4026, 8754, 13930, 16686, 15289, 10785, 5842, 2397, 722, 151, 19, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 08 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 1, 1;
  [4] 0, 0, 0, 1, 4, 4,  1;
  [5] 0, 0, 0, 0, 1, 9, 25, 32,  22,   8,   1;
  [6] 0, 0, 0, 0, 0, 1, 17, 92, 259, 441, 496, 379, 195, 66, 13, 1;
  ...
		

Crossrefs

Row sums are A345258.
Column sums are A350492.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(A=A350491rows(7)); for(i=1, #A, print(A[i])) }
Showing 1-5 of 5 results.