cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133399 Triangle T(n,k)=number of forests of labeled rooted trees with n nodes, containing exactly k trees of height one, all others having height zero (n>=0, 0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 1, 28, 12, 1, 75, 120, 1, 186, 750, 120, 1, 441, 3780, 2100, 1, 1016, 16856, 21840, 1680, 1, 2295, 69552, 176400, 45360, 1, 5110, 272250, 1224720, 705600, 30240, 1, 11253, 1026300, 7692300, 8316000, 1164240, 1, 24564, 3762132, 45018600
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,     2;
  1,     9;
  1,    28,     12;
  1,    75,    120;
  1,   186,    750,     120;
  1,   441,   3780,    2100;
  1,  1016,  16856,   21840,   1680;
  1,  2295,  69552,  176400,  45360;
  1,  5110, 272250, 1224720, 705600, 30240;
  ...
		

Crossrefs

Columns k=1,2 give: A058877, A133386.
Row sums give: A000248.
T(2n,n) = A001813(n), T(2n+1,n) = A002691(n).
Reading the table by diagonals gives triangle A198204. - Peter Bala, Jul 31 2012
Cf. A235596.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(k)*StirlingSecond(n-k+1,k+1): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 06 2019
  • Maple
    T:= (n,k)-> binomial(n,k)*k!*Stirling2(n-k+1,k+1): for n from 0 to 10 do lprint(seq(T(n, k), k=0..floor(n/2))) od;
  • Mathematica
    nn=12;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x (Exp[x]-1)] Exp[x],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k!*StirlingS2[n-k+1, k+1]; Table[t[n, k], {n, 0, 12}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)

Formula

T(n,k) = C(n,k) * k! * stirling2(n-k+1,k+1).
E.g.f.: exp(y*x*(exp(x)-1))*exp(x). - Geoffrey Critzer, Feb 09 2013
Sum_{k=1..floor(n/2)} T(n,k) = A235596(n+1). - Alois P. Heinz, Jun 21 2019

A198204 Series reversion of (1 - t*x)*log(1 + x) with respect to x.

Original entry on oeis.org

1, 1, 2, 1, 9, 12, 1, 28, 120, 120, 1, 75, 750, 2100, 1680, 1, 186, 3780, 21840, 45360, 30240, 1, 441, 16856, 176400, 705600, 1164240, 665280, 1, 1016, 69552, 1224720, 8316000, 25280640, 34594560, 17297280, 1, 2295, 272250, 7692300, 82577880, 408648240, 998917920, 1167566400, 518918400
Offset: 1

Views

Author

Peter Bala, Jul 31 2012

Keywords

Comments

This triangle is A133399 read by diagonals.

Examples

			Triangle begins
.n\k.|..0....1.....2......3......4......5
= = = = = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....2
..3..|..1....9....12
..4..|..1...28...120....120
..5..|..1...75...750...2100...1680
..6..|..1..186..3780..21840..45360..30240
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]*(1 - t*x),{x,0,9}]], x]*Table[n!, {n,0,9}], t]] (* Peter Luschny, Oct 25 2015 *)

Formula

T(n,k) = k!*binomial(n + k - 1,k)*Stirling2(n,k + 1) (n >= 1, k >=0).
E.g.f.: A(x,t) = series reversion of (1 - t*x)*log(1 + x) w.r.t. x = x + (1 + 2*t)*x^2/2! + (1 + 9*t + 12*t^2)*x^3/3! + ....
Main diagonal A001813, first subdiagonal A002691.
Column 1 A058877, column 2 A133386. Row sums A052892.
1 - t*A(x,t) = x/series reversion of x*(1 - t(exp(x) - 1)) with respect to x. Cf. A141618. - Peter Bala, Oct 22 2015
Showing 1-2 of 2 results.