cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A058877 Number of labeled acyclic digraphs with n nodes containing exactly n-1 points of in-degree zero.

Original entry on oeis.org

0, 2, 9, 28, 75, 186, 441, 1016, 2295, 5110, 11253, 24564, 53235, 114674, 245745, 524272, 1114095, 2359278, 4980717, 10485740, 22020075, 46137322, 96468969, 201326568, 419430375, 872415206, 1811939301, 3758096356, 7784628195, 16106127330, 33285996513
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

Convolution of 2^n+1 (A000051) and 2^n-1 (A000225). - Graeme McRae, Jun 07 2006
Let Q be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all nonempty elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |Q|. - Ross La Haye, Feb 20 2008, Oct 21 2008
Also: convolution of A006589 with A000012 (i.e., partial sums of A006589). - R. J. Mathar, Jan 25 2009
The La Haye binary relation Q is more clearly stated as x is nonempty and y has one more element than x. If x is a k-set than the number of such pairs is binomial( n, k) * (n-k). - Michael Somos, Mar 29 2012
Select one of the n nodes of the digraph and select a nonempty subset of the rest to connect to the selected node. This can be done in n * (2^(n-1) - 1) ways. - Michael Somos, Mar 29 2012
Column 1 of A198204. - Peter Bala, Aug 01 2012
a(n) is the number of ternary sequences of length n that contain one 0 and at least one 1. For example, a(3)=9 since the sequences are the 3 permutations of 011 and the 6 permutations of 012. - Enrique Navarrete, Apr 05 2021
a(n) is also the number of multiplications required to compute the permanent of general n X n matrices using canonical trellis method (see Theorem 5, p. 10 in Kiah et al.). - Stefano Spezia, Nov 02 2021

Examples

			G.f. = 2*x^2 + 9*x^3 + 28*x^4 + 75*x^5 + 186*x^6 + 441*x^7 + 1016*x^8 + ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
  • Gerta Rucker and Christoph Rucker, "Walk counts, Labyrinthicity and complexity of acyclic and cyclic graphs and molecules", J. Chem. Inf. Comput. Sci., 40 (2000), 99-106. See Table 1 on page 101. [From Parthasarathy Nambi, Sep 26 2008]

Crossrefs

Second column of A058876. Cf. A003025, A003026.
Column k=1 of A133399.
Cf. A198204.

Programs

Formula

a(n+1) = (n+1)*2^n - n - 1 = Sum_{j=0..n} (n+j)*2^(n-j-1) = A048493(n)-1 = Column sum of A062111. - Henry Bottomley, May 30 2001
From R. J. Mathar, Jan 25 2009: (Start)
G.f.: x^2*(2-3*x)/((1-2*x)*(1-x))^2.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4). (End)
a(n) = Sum_{k=1..n-1} binomial(n, k) * (n-k). - Michael Somos, Mar 29 2012
E.g.f: x*exp(x)*(exp(x)-1). - Enrique Navarrete, Apr 05 2021

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A141618 Triangle read by rows: number of nilpotent partial transformations (of an n-element set) of height r (height(alpha) = |Im(alpha)|), 0 <= r < n.

Original entry on oeis.org

1, 1, 2, 1, 9, 6, 1, 28, 72, 24, 1, 75, 500, 600, 120, 1, 186, 2700, 7800, 5400, 720, 1, 441, 12642, 73500, 117600, 52920, 5040, 1, 1016, 54096, 571536, 1764000, 1787520, 564480, 40320, 1, 2295, 217800, 3916080, 21019824, 40007520, 27941760, 6531840, 362880, 1, 5110, 839700, 24555600, 214326000
Offset: 1

Views

Author

Abdullahi Umar, Aug 23 2008

Keywords

Comments

The sum of each row of the sequence (as a triangular array) is A000272. Second left-downward diagonal is A058877.
From Tom Copeland, Oct 26 2014: (Start)
With T(x,t) the e.g.f. for A055302 for the number of labeled rooted trees with n nodes and k leaves, the mirror of the row polynomials of this array are given by e^T(x,t) = exp[ t * x + (2t) * x^2/2! + (6t + 3t^2) * x^3/3! + ...] = 1 + t * x + (2t + t^2) * x^2/2! + (6t + 9t^2 + t^3) * x^3/3! + ... = 1 + Nr(x,t).
Equivalently, e^x-1 = Nr[Tinv(x,t),t] = t * N[t*Tinv(x,t),1/t], where N(x,t) is the e.g.f. of this array and Tinv(x,t) is the comp. inverse in x of T(x,t). Note that Nr(x,t) = t * N(x*t,1/t), and N(x,t) = t * Nr(x*t,1/t). Also, log[1 + Nr(x,t)]= x * [t + Nr(x,t)] = T(x,t).
E.g.f. is N(x,t)= t * {exp[T(x*t,1/t)] - 1}, and log[1 + N(x,t)/t] = T(x*t,1/t) = x + (2t) * x^2/2! + (3t + 6t^2) * x^3/3! + (4t + 36t^2 + 24t^3) * x^4/4! + ... = x + (t) * x^2 + (t + 2t^2) * x^3/2! + (t + 9t^2 + 6t^3) * x^4/3! + ... is the comp. inverse in x of x / [1 + t * (e^x - 1)].
The exp/log transforms (A036040/A127671) generally give associations between enumerations of sets of connected graphs/objects (in this case, trees) and sets of disconnected (or not necessarily connected) graphs/objects (in this case, bipartite graphs of the nilpotent transformations). The transforms also relate formal cumulants and moments so that Nr(x,t) is then the e.g.f. for the formal moments associated to the formal cumulants whose e.g.f. is T(x,t). (End)
T(n,k) is the number of parking functions of length n containing exactly k+1 distinct values in its image. - Alan Kappler, Jun 08 2024

Examples

			N(J(4,2)) = 6*6*2 = 72.
From _Peter Bala_, Oct 22 2008: (Start)
Triangle begins
n\k|..0.....1.....2.....3.....4....5
=====================================
.1.|..1
.2.|..1.....2
.3.|..1.....9.....6
.4.|..1....28....72....24
.5.|..1....75...500...600...120
.6.|..1...186..2700..7800..5400...720
...
(End)
		

Crossrefs

Programs

  • Maple
    A048993 := proc(n,k)
        combinat[stirling2](n,k) ;
    end proc:
    A141618 := proc(n,k)
        binomial(n,k)*k!*A048993(n,k+1) ;
    end proc:
  • Mathematica
    Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]/(1 + t*x),{x,0,9}]],x]*Table[n!, {n,0,9}],t]] (* Peter Luschny, Oct 24 2015, after Peter Bala *)
  • PARI
    A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
    T(n,k)=A055302(n+1,n+1-k) / (n+1);
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print());
    \\ Joerg Arndt, Oct 27 2014

Formula

N(J(n,r)) = C(n,r)*S(n,r+1)*r! where S(n, r + 1) is a Stirling number of the second kind (given by A048993 with zeros removed); generating function = (x+1)^(n-1).
From Peter Bala, Oct 22 2008: (Start)
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let f(x) = 1 + a*x + a*x^2/2! + a*x^3/3! + ... . Then the e.g.f. for this table is I(f(x)) = 1 + a*x +(a + 2*a^2)*x^2/2! + (a + 9*a^2 + 6*a^3)*x^3/3! + (a + 28*a^2 + 72*a^3 + 24*a^4)*x^4/4! + ... . Note, if we take f(x) = 1 + a*x + a*x^2 + a*x^3 + ... then I(f(x)) is the o.g.f. of the Narayana triangle A001263. (End)
A generator for this array is given by the inverse, g(x,t), of f(x,t)= x/(1 + t * (e^x-1)). Then A248927 gives h(x,t)= x / f(x,t) = 1 + t*(e^x-1)= 1 + t * (x + x^2/2! + x^3/3! + ...) and g(x,t)= x * (1 + t * x + (t + 2 t^2) * x^2/2! + (t + 9 t^2 + 6 t^3) * x^3/3! + ...), so by Bala's arguments A248927 is a refinement of A141618 with row sums A000272. The connection to Narayana numbers is reflected in the relation between A248927 and A134264. See A145271 for more relations that g(x,t) and f(x,t) must satisfy. - Tom Copeland, Oct 17 2014
T(n,k) = C(n,k-1) * A028246(n,k) = C(n,k-1) * A019538(n,k)/k = A055302(n+1,n+1-k) / (n+1). - Tom Copeland, Oct 25 2014
E.g.f. is the series reversion of log(1 + x)/(1 + t*x) with respect to x. Cf. A198204. - Peter Bala, Oct 21 2015

Extensions

More terms from Joerg Arndt, Oct 27 2014

A052892 E.g.f. is series reversion of log(1+x)*(1-x).

Original entry on oeis.org

0, 1, 3, 22, 269, 4606, 101407, 2728818, 86783769, 3184595686, 132443395091, 6156200036746, 316272966462565, 17795937622944846, 1088410048965734055, 71893314170319604066, 5100574859506418167601, 386824334429004242804086, 31229208329663841200670619
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple grammar.
Sum_{k=1..n} a(k)*Sum_{j=k..n} C(k,n-j)*(-1)^(n-j)*Stirling1(j,k)/j! = delta(n,1) for n > 0. - Vladimir Kruchinin, Feb 08 2012

Crossrefs

Row sums of A198204. - Peter Bala, Aug 01 2012
Cf. A052842.

Programs

  • Maple
    spec := [S,{C=Prod(Z,B),S=Set(C,1 <= card),B=Sequence(S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    A052892 := proc (n) option remember; `if`(n = 0, 0, add(pochhammer(n, k)*Stirling2(n, k+1), k = 0..n-1)) end:
    seq(A052892(n), n = 0..17); # Mélika Tebni, Jun 03 2023
  • Mathematica
    a[n_] := ((-1)^(n-1)*(n-1)!*Sum[ (Sum[ j!*(Sum[ (StirlingS1[i, j]*(-1)^(i)*Binomial[j, n+j-i-1])/i!, {i, j, n+j-1}])*Binomial[k, j], {j, 0, k}])*Binomial[n+k-1, n-1], {k, 0, n-1}]); a[0] = 0; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    CoefficientList[InverseSeries[Series[Log[1+x]*(1-x), {x, 0, 20}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 22 2014 *)
  • Maxima
    a(n):=((-1)^(n-1)*(n-1)!*sum((sum(j!*(sum((stirling1(i,j)*(-1)^(i)*binomial(j,n+j-i-1))/i!,i,j,n+j-1))*binomial(k,j), j,0,k)) *binomial(n+k-1,n-1),k,0,n-1)); /* Vladimir Kruchinin, Feb 06 2012 */

Formula

E.g.f.: exp(RootOf(-2*_Z+_Z*exp(x*_Z)+1)*x) - 1.
G.f.: x*Sum_{k>0} 1/(2-k*x)^k. - Vladeta Jovovic, Sep 23 2006
a(n) = (-1)^(n-1)*(n-1)!*Sum_{k=0..n-1} Sum_{j=0..k} j!*(Sum_{i=j..n+j-1} Stirling1(i,j)*(-1)^(i)*C(j,n+j-i-1)/i!)*C(k,j)*C(n+k-1,n-1), n > 0. - Vladimir Kruchinin, Feb 08 2012
a(n) = Sum_{i=0..n-1} binomial(n-1,i)*Sum_{k=0..i} Stirling2(i,k)*k!* binomial(n+k-1,k). - Vladimir Kruchinin, Jan 22 2014
a(n) ~ n^(n-1) * (c/2)^(n-1) / (sqrt(c+1) * exp(n) * (c-1)^(2*n-1)), where c = LambertW(2*exp(1)) = 1.3748225281836... - Vaclav Kotesovec, Jan 22 2014
For n >= 1, a(n) = Sum_{k=0..n-1} Pochhammer(n, k)*Stirling2(n, k+1). - Mélika Tebni, Jun 03 2023

A133399 Triangle T(n,k)=number of forests of labeled rooted trees with n nodes, containing exactly k trees of height one, all others having height zero (n>=0, 0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 1, 28, 12, 1, 75, 120, 1, 186, 750, 120, 1, 441, 3780, 2100, 1, 1016, 16856, 21840, 1680, 1, 2295, 69552, 176400, 45360, 1, 5110, 272250, 1224720, 705600, 30240, 1, 11253, 1026300, 7692300, 8316000, 1164240, 1, 24564, 3762132, 45018600
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,     2;
  1,     9;
  1,    28,     12;
  1,    75,    120;
  1,   186,    750,     120;
  1,   441,   3780,    2100;
  1,  1016,  16856,   21840,   1680;
  1,  2295,  69552,  176400,  45360;
  1,  5110, 272250, 1224720, 705600, 30240;
  ...
		

Crossrefs

Columns k=1,2 give: A058877, A133386.
Row sums give: A000248.
T(2n,n) = A001813(n), T(2n+1,n) = A002691(n).
Reading the table by diagonals gives triangle A198204. - Peter Bala, Jul 31 2012
Cf. A235596.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(k)*StirlingSecond(n-k+1,k+1): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 06 2019
  • Maple
    T:= (n,k)-> binomial(n,k)*k!*Stirling2(n-k+1,k+1): for n from 0 to 10 do lprint(seq(T(n, k), k=0..floor(n/2))) od;
  • Mathematica
    nn=12;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x (Exp[x]-1)] Exp[x],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k!*StirlingS2[n-k+1, k+1]; Table[t[n, k], {n, 0, 12}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)

Formula

T(n,k) = C(n,k) * k! * stirling2(n-k+1,k+1).
E.g.f.: exp(y*x*(exp(x)-1))*exp(x). - Geoffrey Critzer, Feb 09 2013
Sum_{k=1..floor(n/2)} T(n,k) = A235596(n+1). - Alois P. Heinz, Jun 21 2019

A133386 Number of forests of labeled rooted trees with n nodes, containing exactly 2 trees of height one, all others having height zero.

Original entry on oeis.org

0, 0, 0, 0, 12, 120, 750, 3780, 16856, 69552, 272250, 1026300, 3762132, 13498056, 47615750, 165683700, 570024240, 1942538592, 6566094450, 22038141420, 73510278380, 243854707320, 804962754750, 2645408201700, 8658857196552, 28237920483600, 91778694166250
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2007

Keywords

Examples

			a(4) = 12 because 12 trees of the given kind exist: 1<-3 2<-4, 1<-4 2<-3, 1<-2 3<-4, 1<-4 3<-2, 1<-2 4<-3, 1<-3 4<-2, 2<-1 3<-4, 2<-4 3<-1, 2<-1 4<-3, 2<-3 4<-1, 3<-1 4<-2 and 3<-2 4<-1.
		

Crossrefs

Column k=2 of A133399.
Column 2 of A198204. - Peter Bala, Aug 01 2012

Programs

  • Maple
    a:= n-> n*(n-1)*Stirling2(n-1, 3):
    seq(a(n), n=0..50);
  • Mathematica
    Join[{0},Table[n(n-1)StirlingS2[n-1,3],{n,30}]] (* or *) LinearRecurrence[{18,-141,630,-1767,3222,-3815,2826,-1188,216},{0,0,0,0,12,120,750,3780,16856},30] (* Harvey P. Dale, May 02 2015 *)

Formula

a(n) = n*(n-1) * Stirling2(n-1,3).
G.f.: -2*x^4*(85*x^4-180*x^3+141*x^2-48*x+6) / ((x-1)^3*(3*x-1)^3*(2*x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=12, a(5)=120, a(6)=750, a(7)=3780, a(8)=16856, a(n)=18*a(n-1)-141*a(n-2)+630*a(n-3)-1767*a(n-4)+ 3222*a(n-5)- 3815*a(n-6)+2826*a(n-7)-1188*a(n-8)+216*a(n-9). - Harvey P. Dale, May 02 2015
Showing 1-5 of 5 results.