A058877
Number of labeled acyclic digraphs with n nodes containing exactly n-1 points of in-degree zero.
Original entry on oeis.org
0, 2, 9, 28, 75, 186, 441, 1016, 2295, 5110, 11253, 24564, 53235, 114674, 245745, 524272, 1114095, 2359278, 4980717, 10485740, 22020075, 46137322, 96468969, 201326568, 419430375, 872415206, 1811939301, 3758096356, 7784628195, 16106127330, 33285996513
Offset: 1
G.f. = 2*x^2 + 9*x^3 + 28*x^4 + 75*x^5 + 186*x^6 + 441*x^7 + 1016*x^8 + ...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
- Gerta Rucker and Christoph Rucker, "Walk counts, Labyrinthicity and complexity of acyclic and cyclic graphs and molecules", J. Chem. Inf. Comput. Sci., 40 (2000), 99-106. See Table 1 on page 101. [From Parthasarathy Nambi, Sep 26 2008]
- Vincenzo Librandi, Table of n, a(n) for n = 1..2001
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 12.
- Han Mao Kiah, Alexander Vardy and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021.
- Tamás Szakács, Convolution of second order linear recursive sequences. II. Commun. Math. 25, No. 2, 137-148 (2017), remark 3.
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 36.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
-
[(n+1)*2^n-n-1: n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
-
[seq (stirling2(n,2)*n,n=1..29)]; # Zerinvary Lajos, Dec 06 2006
a:=n->sum(k*binomial(n,k), k=2..n): seq(a(n), n=1..29); # Zerinvary Lajos, May 08 2007
-
Table[(n+1)*2^n-n-1, {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 30 2011 *)
a[ n_] := Sum[ Binomial[ n, k] (n - k), {k, n-1}]; (* Michael Somos, Mar 29 2012 *)
-
{a(n) = if( n<1, 0, n * (2^(n-1) - 1))} /* Michael Somos, Mar 29 2012 */
-
[stirling_number2(i,2)*i for i in range(1,26)] # Zerinvary Lajos, Jun 27 2008
-
[(n+1)*gaussian_binomial(n,1,2) for n in range(0,29)] # Zerinvary Lajos, May 31 2009
A141618
Triangle read by rows: number of nilpotent partial transformations (of an n-element set) of height r (height(alpha) = |Im(alpha)|), 0 <= r < n.
Original entry on oeis.org
1, 1, 2, 1, 9, 6, 1, 28, 72, 24, 1, 75, 500, 600, 120, 1, 186, 2700, 7800, 5400, 720, 1, 441, 12642, 73500, 117600, 52920, 5040, 1, 1016, 54096, 571536, 1764000, 1787520, 564480, 40320, 1, 2295, 217800, 3916080, 21019824, 40007520, 27941760, 6531840, 362880, 1, 5110, 839700, 24555600, 214326000
Offset: 1
N(J(4,2)) = 6*6*2 = 72.
From _Peter Bala_, Oct 22 2008: (Start)
Triangle begins
n\k|..0.....1.....2.....3.....4....5
=====================================
.1.|..1
.2.|..1.....2
.3.|..1.....9.....6
.4.|..1....28....72....24
.5.|..1....75...500...600...120
.6.|..1...186..2700..7800..5400...720
...
(End)
-
A048993 := proc(n,k)
combinat[stirling2](n,k) ;
end proc:
A141618 := proc(n,k)
binomial(n,k)*k!*A048993(n,k+1) ;
end proc:
-
Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]/(1 + t*x),{x,0,9}]],x]*Table[n!, {n,0,9}],t]] (* Peter Luschny, Oct 24 2015, after Peter Bala *)
-
A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
T(n,k)=A055302(n+1,n+1-k) / (n+1);
for(n=1,10,for(k=1,n,print1(T(n,k),", "));print());
\\ Joerg Arndt, Oct 27 2014
A052892
E.g.f. is series reversion of log(1+x)*(1-x).
Original entry on oeis.org
0, 1, 3, 22, 269, 4606, 101407, 2728818, 86783769, 3184595686, 132443395091, 6156200036746, 316272966462565, 17795937622944846, 1088410048965734055, 71893314170319604066, 5100574859506418167601, 386824334429004242804086, 31229208329663841200670619
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Prod(Z,B),S=Set(C,1 <= card),B=Sequence(S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
# second Maple program:
A052892 := proc (n) option remember; `if`(n = 0, 0, add(pochhammer(n, k)*Stirling2(n, k+1), k = 0..n-1)) end:
seq(A052892(n), n = 0..17); # Mélika Tebni, Jun 03 2023
-
a[n_] := ((-1)^(n-1)*(n-1)!*Sum[ (Sum[ j!*(Sum[ (StirlingS1[i, j]*(-1)^(i)*Binomial[j, n+j-i-1])/i!, {i, j, n+j-1}])*Binomial[k, j], {j, 0, k}])*Binomial[n+k-1, n-1], {k, 0, n-1}]); a[0] = 0; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
CoefficientList[InverseSeries[Series[Log[1+x]*(1-x), {x, 0, 20}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 22 2014 *)
-
a(n):=((-1)^(n-1)*(n-1)!*sum((sum(j!*(sum((stirling1(i,j)*(-1)^(i)*binomial(j,n+j-i-1))/i!,i,j,n+j-1))*binomial(k,j), j,0,k)) *binomial(n+k-1,n-1),k,0,n-1)); /* Vladimir Kruchinin, Feb 06 2012 */
A133399
Triangle T(n,k)=number of forests of labeled rooted trees with n nodes, containing exactly k trees of height one, all others having height zero (n>=0, 0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 2, 1, 9, 1, 28, 12, 1, 75, 120, 1, 186, 750, 120, 1, 441, 3780, 2100, 1, 1016, 16856, 21840, 1680, 1, 2295, 69552, 176400, 45360, 1, 5110, 272250, 1224720, 705600, 30240, 1, 11253, 1026300, 7692300, 8316000, 1164240, 1, 24564, 3762132, 45018600
Offset: 0
Triangle begins:
1;
1;
1, 2;
1, 9;
1, 28, 12;
1, 75, 120;
1, 186, 750, 120;
1, 441, 3780, 2100;
1, 1016, 16856, 21840, 1680;
1, 2295, 69552, 176400, 45360;
1, 5110, 272250, 1224720, 705600, 30240;
...
- Alois P. Heinz, Rows n = 0..200, flattened
- A. P. Heinz, Finding Two-Tree-Factor Elements of Tableau-Defined Monoids in Time O(n^3), Ed. S. G. Akl, F. Fiala, W. W. Koczkodaj: Advances in Computing and Information, ICCI90 Niagara Falls, LNCS 468, Springer-Verlag (1990), pp. 120-128.
-
/* As triangle */ [[Binomial(n,k)*Factorial(k)*StirlingSecond(n-k+1,k+1): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 06 2019
-
T:= (n,k)-> binomial(n,k)*k!*Stirling2(n-k+1,k+1): for n from 0 to 10 do lprint(seq(T(n, k), k=0..floor(n/2))) od;
-
nn=12;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x (Exp[x]-1)] Exp[x],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
t[n_, k_] := Binomial[n, k]*k!*StirlingS2[n-k+1, k+1]; Table[t[n, k], {n, 0, 12}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)
A133386
Number of forests of labeled rooted trees with n nodes, containing exactly 2 trees of height one, all others having height zero.
Original entry on oeis.org
0, 0, 0, 0, 12, 120, 750, 3780, 16856, 69552, 272250, 1026300, 3762132, 13498056, 47615750, 165683700, 570024240, 1942538592, 6566094450, 22038141420, 73510278380, 243854707320, 804962754750, 2645408201700, 8658857196552, 28237920483600, 91778694166250
Offset: 0
a(4) = 12 because 12 trees of the given kind exist: 1<-3 2<-4, 1<-4 2<-3, 1<-2 3<-4, 1<-4 3<-2, 1<-2 4<-3, 1<-3 4<-2, 2<-1 3<-4, 2<-4 3<-1, 2<-1 4<-3, 2<-3 4<-1, 3<-1 4<-2 and 3<-2 4<-1.
- Alois P. Heinz, Table of n, a(n) for n = 0..650
- A. P. Heinz, Finding Two-Tree-Factor Elements of Tableau-Defined Monoids in Time O(n^3), Ed. S. G. Akl, F. Fiala, W. W. Koczkodaj: Advances in Computing and Information, ICCI90 Niagara Falls, LNCS 468, Springer-Verlag (1990), pp. 120-128.
- Index entries for linear recurrences with constant coefficients, signature (18,-141,630,-1767,3222,-3815,2826,-1188,216).
-
a:= n-> n*(n-1)*Stirling2(n-1, 3):
seq(a(n), n=0..50);
-
Join[{0},Table[n(n-1)StirlingS2[n-1,3],{n,30}]] (* or *) LinearRecurrence[{18,-141,630,-1767,3222,-3815,2826,-1188,216},{0,0,0,0,12,120,750,3780,16856},30] (* Harvey P. Dale, May 02 2015 *)
Showing 1-5 of 5 results.
Comments