cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A058877 Number of labeled acyclic digraphs with n nodes containing exactly n-1 points of in-degree zero.

Original entry on oeis.org

0, 2, 9, 28, 75, 186, 441, 1016, 2295, 5110, 11253, 24564, 53235, 114674, 245745, 524272, 1114095, 2359278, 4980717, 10485740, 22020075, 46137322, 96468969, 201326568, 419430375, 872415206, 1811939301, 3758096356, 7784628195, 16106127330, 33285996513
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

Convolution of 2^n+1 (A000051) and 2^n-1 (A000225). - Graeme McRae, Jun 07 2006
Let Q be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all nonempty elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |Q|. - Ross La Haye, Feb 20 2008, Oct 21 2008
Also: convolution of A006589 with A000012 (i.e., partial sums of A006589). - R. J. Mathar, Jan 25 2009
The La Haye binary relation Q is more clearly stated as x is nonempty and y has one more element than x. If x is a k-set than the number of such pairs is binomial( n, k) * (n-k). - Michael Somos, Mar 29 2012
Select one of the n nodes of the digraph and select a nonempty subset of the rest to connect to the selected node. This can be done in n * (2^(n-1) - 1) ways. - Michael Somos, Mar 29 2012
Column 1 of A198204. - Peter Bala, Aug 01 2012
a(n) is the number of ternary sequences of length n that contain one 0 and at least one 1. For example, a(3)=9 since the sequences are the 3 permutations of 011 and the 6 permutations of 012. - Enrique Navarrete, Apr 05 2021
a(n) is also the number of multiplications required to compute the permanent of general n X n matrices using canonical trellis method (see Theorem 5, p. 10 in Kiah et al.). - Stefano Spezia, Nov 02 2021

Examples

			G.f. = 2*x^2 + 9*x^3 + 28*x^4 + 75*x^5 + 186*x^6 + 441*x^7 + 1016*x^8 + ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
  • Gerta Rucker and Christoph Rucker, "Walk counts, Labyrinthicity and complexity of acyclic and cyclic graphs and molecules", J. Chem. Inf. Comput. Sci., 40 (2000), 99-106. See Table 1 on page 101. [From Parthasarathy Nambi, Sep 26 2008]

Crossrefs

Second column of A058876. Cf. A003025, A003026.
Column k=1 of A133399.
Cf. A198204.

Programs

Formula

a(n+1) = (n+1)*2^n - n - 1 = Sum_{j=0..n} (n+j)*2^(n-j-1) = A048493(n)-1 = Column sum of A062111. - Henry Bottomley, May 30 2001
From R. J. Mathar, Jan 25 2009: (Start)
G.f.: x^2*(2-3*x)/((1-2*x)*(1-x))^2.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4). (End)
a(n) = Sum_{k=1..n-1} binomial(n, k) * (n-k). - Michael Somos, Mar 29 2012
E.g.f: x*exp(x)*(exp(x)-1). - Enrique Navarrete, Apr 05 2021

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A048483 Array read by antidiagonals: T(k,n) = (k+1)2^n - k.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 10, 5, 1, 32, 31, 22, 13, 6, 1, 64, 63, 46, 29, 16, 7, 1, 128, 127, 94, 61, 36, 19, 8, 1, 256, 255, 190, 125, 76, 43, 22, 9, 1, 512, 511, 382, 253, 156, 91, 50, 25, 10, 1, 1024, 1023, 766, 509, 316, 187
Offset: 0

Views

Author

Keywords

Comments

n-th difference of (T(k,n),T(k,n-1),...,T(k,0)) is k+1, for n=1,2,3,...; k=0,1,2,...

Examples

			1 2 4 8 16 32 ...
1 3 7 15 31 63 ...
1 4 10 22 46 94 ...
1 5 13 29 61 125 ...
1 6 16 36 76 156 ...
		

Crossrefs

Rows are A000079 (k=0), A000225 (k=1), A033484 (k=2), A036563 (k=3), A048487 (k=4), A048488 (k=5), A048489 (k=6), A048490 (k=7), A048491 (k=8).
Main diagonal is A048493. Cf. A048494.

Formula

G.f.: (1-x+kx)/[(1-x)(1-2x)]. E.g.f.: (k+1)*exp(2x) - k*exp(x).
Recurrences: T(k, n) = 2T(k, n-1)+k = T(k-1, n)+2^n-1, T(k, 0) = 1.

Extensions

Edited by Ralf Stephan, Feb 05 2004

A260005 a(n) = f(2,n,2), where f is the Sudan function defined in A260002.

Original entry on oeis.org

19, 10228, 15569256417, 5742397643169488579854258, 36681813266165915713665394441869800619098139628586701684547
Offset: 0

Views

Author

Natan Arie Consigli, Jul 23 2015

Keywords

Comments

Naturally a subsequence of A260004.
See A260002-A260003 for the evaluation of the Sudan function.
Using f(2,n,2) = f(1, f(2,n,1), f(2,n,1)+2) = 2^(f(2,n,1)+2)*(f(2,n,1)+2)-f(2,n,1)-4 and f(2,n,1) = f(1, n, n+1) = 2^(n+1)*(n+2)-(n+3) we have:
a(n)=f(2,n,2)
=f(1, 2^(n+1)*(n+2)-(n+3), 2^(n+1)*(n+2)-(n+3)+2)
=2^(2^(n+1)*(n+2)-(n+3)+2)*(2^(n+1)*(n+2)-(n+3)+2)-2^(n+1)*(n+2)+(n+3)-4
=2^(2^(n+1)*(n+2)-(n+1))*(2^(n+1)*(n+2)-(n+1))-2^(n+1)*(n+2)+(n-1).

Examples

			a(1) = f(2,1,2) = f(1,f(2,1,1),f(2,1,1)+2) = f(1,8,10) = 2^10*(8+2)-10-2 = 10228.
		

Crossrefs

Cf. A048493 (f(2,n,1)), A260002, A260003, A260004, A260006.

Programs

  • Magma
    [2^(2^(n+1)*(n+2)-(n+1))*(2^(n+1)*(n+2)-(n+1))-2^(n+1)*(n+2)+(n-1):n in [0..5]]; // Vincenzo Librandi, Jul 27 2015
    
  • Mathematica
    Table[2^(2^(n + 1) (n + 2) - (n + 1)) (2^(n + 1) (n + 2) - (n + 1)) - 2^(n + 1) (n + 2) + (n - 1), {n, 0, 5}] (* Vincenzo Librandi, Jul 27 2015 *)
  • PARI
    a(n) = 2^(2^(n+1)*(n+2)-(n+1))*(2^(n+1)*(n+2)-(n+1))-2^(n+1)*(n+2)+(n-1);
    vector(10, n, a(n-1)) \\ Altug Alkan, Oct 01 2015

Formula

a(n) = 2^(2^(n+1)*(n+2)-(n+1))*(2^(n+1)*(n+2)-(n+1))-2^(n+1)*(n+2)+(n-1).

A260003 Values f(1,x,y) with x>=0, y>0, in increasing order, where f is the Sudan function defined in A260002.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Natan Arie Consigli, Jul 23 2015

Keywords

Comments

Equivalently, numbers of the form 2^y(x+2)-y-2.
Using f(1,x,y) = f(0, f(1,x,y-1), f(1,x,y-1)+y) = 2*f(1,x,y-1) + y
f(1,x,y) + y + 2 = 2*(f(1,x,y-1)+y-1+2) let g(y) = f(1,x,y) + y + 2 then g(y) = 2*g(y-1). This means g(y)=2^y*g(0) and f(1,x,y) + y + 2 = 2^y(f(1,x,0)+2) but f(1,x,0) = x so f(1,x,y) = 2^y(x+2) - y - 2.
In this list we suppose that y>0. If we include y=0, every natural number would be in the sequence.

Examples

			19 is listed because f(1,1,3) = 2^3*(1+2) - 3 - 2 = 19.
		

Crossrefs

Cf. A000325 (f(1,2,n)), A005408 (f(1,n,1)=2n+1), A048493 (f(1,n,2)), A079583 (f(1,1,n)), A123720 (f(1,4,n)), A133124(f(1,3,n)), A260002, A260004, A260005 (f(2,n,2)), A260006.

A260004 Values of f(2,x,y) in increasing order, for x>=0, y>0 where f is the Sudan function defined in A260002.

Original entry on oeis.org

1, 8, 19, 27, 74, 185, 440, 1015, 2294, 5109, 10228, 11252, 24563, 53234, 114673, 245744, 524271, 1114094, 2359277, 4980716, 10485739, 22020074, 46137321, 88080360, 96468968, 201326567, 419430374, 872415205, 1811939300, 15569256417
Offset: 1

Views

Author

Natan Arie Consigli, Jul 23 2015

Keywords

Comments

This is a subsequence of A260003 since f(2,x,y)= f(1, f(2,x,y-1), f(2,x,y-1)+y).
In this list we suppose that y>0. If we take y=0, all the natural numbers would be in the sequence.
To evaluate the Sudan function see A260002-A260003.

Examples

			f(2,0,1) = f(1, f(2,0,0), f(2,0,0)+1) = f(1,0,1) = 2^1(0+2)-1-2 = 1;
f(2,0,2) = f(1, [f(2,0,1)], [f(2,0,1)+1+1]) = f(1,1,3) = 2^3(1+2)-3-2 = 19;
		

Crossrefs

Cf. A048493 (f(2,n,1)), A260002, A260003, A260005 (f(2,n,2)), A260006.
Showing 1-5 of 5 results.