A062111 Upper-right triangle resulting from binomial transform calculation for nonnegative integers.
0, 1, 1, 4, 3, 2, 12, 8, 5, 3, 32, 20, 12, 7, 4, 80, 48, 28, 16, 9, 5, 192, 112, 64, 36, 20, 11, 6, 448, 256, 144, 80, 44, 24, 13, 7, 1024, 576, 320, 176, 96, 52, 28, 15, 8, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 9, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 10
Offset: 0
Examples
As a lower triangle (T(n, k)): 0; 1, 1; 4, 3, 2; 12, 8, 5, 3; 32, 20, 12, 7, 4; 80, 48, 28, 16, 9, 5; 192, 112, 64, 36, 20, 11, 6; 448, 256, 144, 80, 44, 24, 13, 7;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- F. Ellermann, Illustration of binomial transforms
- C.-A. Laisant, Sur les tableaux de sommes - Nouvelles applications, Compt. Rendus de l'Association Francaise pour l'Avancement des Sciences, Aout 04 1893, pp. 206-216 (table given on p. 212).
Crossrefs
Programs
-
Magma
[2^(n-k-1)*(n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 28 2022
-
Mathematica
Table[2^(n-k-1)*(n+k), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 28 2022 *)
-
SageMath
def A062111(n,k): return 2^(n-k-1)*(n+k) flatten([[A062111(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 28 2022
Formula
A(n, k) = A(n, k-1) + A(n+1, k) if k > n with A(n, n) = n.
A(n, k) = (k+n)*2^(k-n-1) if k >= n.
T(2*n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 21 2009
From G. C. Greubel, Sep 28 2022: (Start)
T(n, k) = 2^(n-k-1)*(n+k) for 0 <= k <= n, n >= 0.
T(m*n, n) = 2^((m-1)*n-1)*(m+1)*A001477(n), m >= 1.
T(2*n-1, n-1) = A130129(n-1).
T(2*n+1, n-1) = 12*A001787(n).
Sum_{k=0..n} T(n, k) = A058877(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = 3*A073371(n-2), n >= 2.
T(n, k) = A152920(n, n-k). (End)
Comments