A193722 Triangular array: the fusion of (x+1)^n and (x+2)^n; see Comments for the definition of fusion.
1, 1, 2, 1, 5, 6, 1, 8, 21, 18, 1, 11, 45, 81, 54, 1, 14, 78, 216, 297, 162, 1, 17, 120, 450, 945, 1053, 486, 1, 20, 171, 810, 2295, 3888, 3645, 1458, 1, 23, 231, 1323, 4725, 10773, 15309, 12393, 4374, 1, 26, 300, 2016, 8694, 24948, 47628, 58320, 41553, 13122
Offset: 0
Examples
First six rows: 1; 1, 2; 1, 5, 6; 1, 8, 21, 18; 1, 11, 45, 81, 54; 1, 14, 78, 216, 297, 162;
Links
- Jinyuan Wang, Rows n=0..101 of triangle, flattened
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> 3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ) ))); # G. C. Greubel, Feb 18 2020
-
Magma
[3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
Maple
fusion := proc(p, q, n) local d, k; p(n-1,0)*q(n,x)+add(coeff(p(n-1,x),x^k)*q(n-k,x), k=1..n-1); [1,seq(coeff(%,x,n-1-k), k=0..n-1)] end: p := (n, x) -> (x + 1)^n; q := (n, x) -> (x + 2)^n; A193722_row := n -> fusion(p, q, n); for n from 0 to 5 do A193722_row(n) od; # Peter Luschny, Jul 24 2014
-
Mathematica
(* First program *) z = 9; a = 1; b = 1; c = 1; d = 2; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193723 *) (* Second program *) Table[3^(k-1)*(Binomial[n-1,k] +2*Binomial[n,k]), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
-
PARI
T(n,k) = 3^(k-1)*(binomial(n-1,k) +2*binomial(n,k)); \\ G. C. Greubel, Feb 18 2020
-
Sage
def fusion(p, q, n): F = p(n-1,0)*q(n,x)+add(expand(p(n-1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n-1)) return [1]+[expand(F).coefficient(x,n-1-k) for k in (0..n-1)] A193842_row = lambda k: fusion(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k) for n in range(7): A193842_row(n) # Peter Luschny, Jul 24 2014
Formula
Triangle T(n,k), read by rows, given by [1,0,0,0,0,0,0,0,...] DELTA [2,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
T(n,k) = 3*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
T(n, k) = 3^(k-1)*( binomial(n-1,k) + 2*binomial(n,k) ). - G. C. Greubel, Feb 18 2020
Comments