cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291382 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.

Original entry on oeis.org

2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,1,0,0,0,...) = A019590, in some cases t(1,1,0,0,0,...) is a shifted version of the cited sequence:
p(S) t(1,1,0,0,0,...)
1 - S A000045 (Fibonacci numbers)
1 - S^2 A094686
1 - S^3 A115055
1 - S^4 A291379
1 - S^5 A281380
1 - S^6 A281381
1 - 2 S A002605
1 - 3 S A125145
(1 - S)^2 A001629
(1 - S)^3 A001628
(1 - S)^4 A001629
(1 - S)^5 A001873
(1 - S)^6 A001874
1 - S - S^2 A123392
1 - 2 S - S^2 A291382
1 - S - 2 S^2 A124861
1 - 2 S - S^2 A291383
(1 - 2 S)^2 A073388
(1 - 3 S)^2 A291387
(1 - 5 S)^2 A291389
(1 - 6 S)^2 A291391
(1 - S)(1 - 2 S) A291393
(1 - S)(1 - 3 S) A291394
(1 - 2 S)(1 - 3 S) A291395
(1 - S)(1 - 2 S) A291393
(1 - S)(1 - 2 S)(1 - 3 S) A291396
1 - S - S^3 A291397
1 - S^2 - S^3 A291398
1 - S - S^2 - S^3 A186812
1 - S - S^2 - S^3 - S^4 A291399
1 - S^2 - S^4 A291400
1 - S - S^4 A291401
1 - S^3 - S^4 A291402
1 - 2 S^2 - S^4 A291403
1 - S^2 - 2 S^4 A291404
1 - 2 S^2 - 2 S^4 A291405
1 - S^3 - S^6 A291407
(1 - S)(1 - S^2) A291408
(1 - S^2)(1 - S)^2 A291409
1 - S - S^2 - 2 S^3 A291410
1 - 2 S - S^2 + S^3 A291411
1 - S - 2 S^2 + S^3 A291412
1 - 3 S + S^2 + S^3 A291413
1 - 2 S + S^3 A291414
1 - 3 S + S^2 A291415
1 - 4 S + S^2 A291416
1 - 4 S + 2 S^2 A291417

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^2; p = 1 - 2 s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A019590 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291382 *)

Formula

G.f.: (-2 - 3 x - 2 x^2 - x^3)/(-1 + 2 x + 3 x^2 + 2 x^3 + x^4).
a(n) = 2*a(n-1) + 3*a(n-2) + 2*a(n-3) + a(n-4) for n >= 5.

A297682 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 0, 1 or 4 neighboring 1s.

Original entry on oeis.org

2, 4, 4, 7, 11, 8, 13, 29, 33, 16, 24, 80, 150, 98, 32, 44, 219, 629, 742, 291, 64, 81, 597, 2790, 4633, 3744, 865, 128, 149, 1632, 12110, 32911, 34872, 18840, 2570, 256, 274, 4459, 52889, 221420, 401678, 260924, 94891, 7637, 512, 504, 12181, 230406, 1519630
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2018

Keywords

Comments

Table starts
...2.....4.......7........13.........24...........44.............81
...4....11......29........80........219..........597...........1632
...8....33.....150.......629.......2790........12110..........52889
..16....98.....742......4633......32911.......221420........1519630
..32...291....3744.....34872.....401678......4202440.......45865837
..64...865...18840....260924....4870764.....78957968.....1368968852
.128..2570...94891...1955750...59210634...1487819051....41030621948
.256..7637..477850..14651847..719647644..28013761161..1229127412701
.512.22693.2406649.109783269.8748946600.527589764007.36837288191422

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .1..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0
..0..0..1..1. .0..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..0
..0..1..0..0. .0..0..1..0. .1..0..0..0. .1..0..0..1. .0..0..0..0
..0..1..0..0. .1..0..1..0. .0..1..0..0. .0..0..0..0. .0..0..1..1
		

Crossrefs

Column 1 is A000079.
Column 2 is A282990.
Row 1 is A000073(n+3).
Row 2 is A124861(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -a(n-4)
k=3: a(n) = 5*a(n-1) -a(n-2) +8*a(n-3) -5*a(n-4) -30*a(n-5) +17*a(n-6)
k=4: [order 16]
k=5: [order 30]
k=6: [order 57]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +a(n-3)
n=2: a(n) = a(n-1) +3*a(n-2) +4*a(n-3) +2*a(n-4)
n=3: [order 8]
n=4: [order 17]
n=5: [order 41]

A124860 A Jacobsthal-Pascal triangle.

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 5, 15, 15, 5, 11, 44, 66, 44, 11, 21, 105, 210, 210, 105, 21, 43, 258, 645, 860, 645, 258, 43, 85, 595, 1785, 2975, 2975, 1785, 595, 85, 171, 1368, 4788, 9576, 11970, 9576, 4788, 1368, 171, 341, 3069, 12276, 28644, 42966, 42966, 28644, 12276, 3069, 341
Offset: 0

Views

Author

Paul Barry, Nov 10 2006

Keywords

Comments

Triangle T(n, k) read by rows given by [1, 2, -2, 0, 0, 0, ...] DELTA [1, 2, -2, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 11 2006

Examples

			Triangle begins
   1;
   1,   1;
   3,   6,   3;
   5,  15,  15,   5;
  11,  44,  66,  44,  11;
  21, 105, 210, 210, 105,  21;
  43, 258, 645, 860, 645, 258, 43;
		

Crossrefs

Cf. A001045, A003683 (row sums), A016095, A084938, A124862 (diagonal sums), A193449.

Programs

  • Magma
    A124860:= func< n,k | Binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3 >;
    [A124860(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Maple
    A := proc(n,k) ## n >= 0 and k = 0 .. n
        ((-1)^n+2^(n+1))/3*binomial(n, k)
    end proc: # Yu-Sheng Chang, Jan 15 2020
  • Mathematica
    jacobPascal[n_, k_]:= Binomial[n, k]*(2^(n+1) -(-1)^(n+1))/3; ColumnForm[Table[jacobPascal[n, k], {n,0,12}, {k,0,n}], Center] (* Alonso del Arte, Jan 16 2020 *)
  • SageMath
    def A124860(n,k): return binomial(n,k)*(2^(n+1) - (-1)^(n+1))/3
    flatten([[A124860(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

G.f.: 1/(1 - x*(1+y) - 2*x^2*(1+y)^2).
T(n, k) = J(n+1) * C(n, k), where J(n) = A001045(n).
T(n, 0) = T(n, n) = A001045(n+1).
T(2*n, n) = A124862(n).
Sum_{k=0..n} T(n, k) = A003683(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A124861(n).
T(n, k) = T(n-1, k-1) + T(n-1, k) + 2*T(n-2, k-2) + 4*T(n-2, k-1) + 2*T(n-2, k), T(0, 0) = 1, T(n, k) = 0 if k < 0 or if k > n . - Philippe Deléham, Nov 11 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k + 1 + 2*x*(1+y))*x*(1 + y)/((2*k + 2 + 2*x*(1+y))*x*(1+y) + 1/T(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
From G. C. Greubel, Feb 17 2023: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A193449(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)
Showing 1-3 of 3 results.