A124927 Triangle read by rows: T(n,0)=1, T(n,k)=2*binomial(n,k) if k>0 (0<=k<=n).
1, 1, 2, 1, 4, 2, 1, 6, 6, 2, 1, 8, 12, 8, 2, 1, 10, 20, 20, 10, 2, 1, 12, 30, 40, 30, 12, 2, 1, 14, 42, 70, 70, 42, 14, 2, 1, 16, 56, 112, 140, 112, 56, 16, 2, 1, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2, 1, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2
Offset: 0
Examples
Triangle starts: 1; 1, 2; 1, 4, 2; 1, 6, 6, 2; 1, 8, 12, 8, 2; 1, 10, 20, 20, 10, 2; (1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 4, 2, 0; 1, 6, 6, 2, 0; 1, 8, 12, 8, 2, 0; 1, 10, 20, 20, 10, 2, 0. - _Philippe Deléham_, Mar 25 2012
Links
Programs
-
Haskell
a124927 n k = a124927_tabl !! n !! k a124927_row n = a124927_tabl !! n a124927_tabl = iterate (\row -> zipWith (+) ([0] ++ reverse row) (row ++ [1])) [1] -- Reinhard Zumkeller, Mar 04 2012
-
Magma
[k eq 0 select 1 else 2*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 10 2019
-
Maple
T:=proc(n,k) if k=0 then 1 else 2*binomial(n,k) fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
(* First program *) u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210042 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A124927 *) (* Clark Kimberling, Mar 17 2012 *) (* Second program *) Table[If[k==0, 1, 2*Binomial[n, k]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
-
PARI
T(n,k) = if(k==0,1, 2*binomial(n,k)); \\ G. C. Greubel, Jul 10 2019
-
Sage
def T(n, k): if (k==0): return 1 else: return 2*binomial(n,k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 10 2019
Formula
T(n,0) = 1; for n>0: T(n,n) = 2, T(n,k) = T(n-1,k) + T(n-1,n-k), 1Reinhard Zumkeller, Mar 04 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
G.f.: (1-x+x*y)/((-1+x)*(x*y+x-1)). - R. J. Mathar, Aug 11 2015
Extensions
Edited by N. J. A. Sloane, Nov 24 2006
Comments