A124928 Triangle read by rows: T(n,0) = 1, T(n,k) = 3*binomial(n,k) if k>=0 (0<=k<=n).
1, 1, 3, 1, 6, 3, 1, 9, 9, 3, 1, 12, 18, 12, 3, 1, 15, 30, 30, 15, 3, 1, 18, 45, 60, 45, 18, 3, 1, 21, 63, 105, 105, 63, 21, 3, 1, 24, 84, 168, 210, 168, 84, 24, 3, 1, 27, 108, 252, 378, 378, 252, 108, 27, 3, 1, 30, 135, 360, 630, 756, 630, 360, 135, 30, 3
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 3; 1, 6, 3; 1, 9, 9, 3; 1, 12, 18, 12, 3; 1, 15, 30, 30, 15, 3; 1, 18, 45, 60, 45, 18, 3; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=0 then return 1; else return 3*Binomial(n,k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 19 2019
-
Magma
[k eq 0 select 1 else 3*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2019
-
Maple
T:=proc(n,k) if k=0 then 1 else 3*binomial(n,k) fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
Flatten[Table[If[k==0,1,3*Binomial[n,k]],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Oct 19 2013 *)
-
PARI
T(n,k) = if(k==0, 1, 3*binomial(n,k)); \\ G. C. Greubel, Nov 19 2019
-
Sage
def T(n, k): if (k==0): return 1 else: return 3*binomial(n,k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 19 2019
Formula
G.f.: G(t,z) = 3/(1-(1+t)*z) - 2/(1-z).
Extensions
Edited by N. J. A. Sloane, Nov 29 2006
Comments