A124969 Numbers which can be expressed as an ordered sum of 3 squares in 5 or more different ways.
146, 153, 185, 194, 206, 209, 221, 225, 230, 234, 257, 261, 266, 269, 281, 290, 293, 297, 305, 306, 314, 321, 325, 326, 329, 338, 341, 342, 350, 353, 354, 362, 365, 369, 374, 377, 381, 386, 389, 398, 401, 402, 405, 409, 410, 413, 414, 419, 425, 426, 434
Offset: 1
Keywords
Examples
a(1)=146 because 146=9^2+7^2+4^2 = 9^2+8^2+1^2 = 11^2+4^2+3^2 = 11^2+5^2+0^2 = 12^2+1^2+1^2 185=0^2+4^2+13^2=0^2+8^2+11^2=2^2+9^2+10^2=4^2+5^2+12^2=6^2+7^2+10^2, so 185 is in the list.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[434], Length@PowersRepresentations[#, 3, 2] >= 5 &] (* Ray Chandler, Oct 31 2019 *)
-
PARI
isA124969(n)={ local(cnt=0,z2) ; for(x=0,floor(sqrt(n)), for(y=x,floor(sqrt(n-x^2)), z2=n-x^2-y^2 ; if( z2>=y^2 && issquare(z2), cnt++ ; ) ; if(cnt >=5, return(1) ) ; ) ; ) ; return(0) ; } { for(n=1,800, if( isA124969(n), print1(n,", ") ; ) ; ) ; } \\ R. J. Mathar, Dec 07 2006
Extensions
Corrected and extended by Ray Chandler and R. J. Mathar, Nov 29 2006