A124971 Numbers n which can be expressed as the ordered sum of 3 squares in 2 or more different ways and such that n+1 has the same property.
17, 25, 26, 33, 49, 50, 53, 61, 65, 68, 72, 73, 74, 81, 82, 85, 89, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 113, 116, 117, 121, 122, 125, 129, 130, 131, 136, 137, 138, 144, 145, 146, 149, 152, 153, 154, 157, 161, 164, 165, 169, 170, 173, 177, 178
Offset: 1
Keywords
Examples
a(1)=17 because 17=3^2+2^2+2^2 = 4^2+1^2+0^2 and a(1)+1= 18=3^2+3^2+0^2 = 4^2+1^2+1^2
Links
- R. J. Mathar, Table of n, a(n) for n = 1..6598
Programs
-
Mathematica
Select[Range[200], Length@PowersRepresentations[#, 3, 2] > 1 && Length@PowersRepresentations[# + 1, 3, 2] > 1 &] (* Ray Chandler, Oct 31 2019 *)
-
PARI
isCnt3sqr(n)={ local(cnt=0,z2) ; for(x=0,floor(sqrt(n)), for(y=x,floor(sqrt(n-x^2)), z2=n-x^2-y^2 ; if( z2>=y^2 && issquare(z2), cnt++ ; ) ; if(cnt >=2, return(1) ) ; ) ; ) ; return(0) ; } isA124971(n)= { return( isCnt3sqr(n) && isCnt3sqr(n+1)) ; } { for(n=1,200, if( isA124971(n), print1(n,", ") ; ) ; ) ; } \\ R. J. Mathar, Nov 29 2006
Formula
Extensions
Corrected and extended by Ray Chandler, Nov 30 2006
Corrected and extended by R. J. Mathar, Nov 29 2006