A124974 Integers n such that 2^n == 17 (mod n).
1, 3, 5, 9, 45, 99, 53559, 1143357, 2027985, 36806085, 1773607905, 3314574181, 1045463125509, 1226640523999, 3567404505159, 28726885591099, 39880799734039, 87977068273719, 106436400721299, 339966033494859, 999567363539883
Offset: 1
Keywords
Examples
2^45 = 17 + 45*781874935307, 2^99 = 17 + 99*6402275758728431320690420229.
Programs
-
Mathematica
m = 17; Join[Select[Range[m], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
Extensions
Terms 1, 3, 5, 9 prepended by Max Alekseyev, May 20 2011
a(11)-a(21) from Max Alekseyev, May 25 2012
Comments