A124980 Smallest strictly positive number decomposable in n different ways as a sum of two squares.
1, 25, 325, 1105, 4225, 5525, 203125, 27625, 71825, 138125, 2640625, 160225, 17850625, 1221025, 1795625, 801125, 1650390625, 2082925, 49591064453125, 4005625, 44890625, 2158203125, 30525625, 5928325, 303460625, 53955078125, 35409725, 100140625
Offset: 1
Keywords
Examples
a(3) = 325 is decomposable in 3 ways: 15^2 + 10^2 = 17^2 + 6^2 = 18^2 + 1^2.
Links
- Ray Chandler, Table of n, a(n) for n = 1..1458 (a(1459) exceeds 1000 digits).
Crossrefs
Programs
-
PARI
A124980(n)={for(a=1, oo, A000161(a)==n && return(a))} \\ R. J. Mathar, Nov 29 2006, edited by M. F. Hasler, Jul 07 2024
-
PARI
PD(n, L=n, D=Vecrev(divisors(n)[^1])) = { if(n>1, concat(vector(#D, i, if(D[i] > L, [], D[i] < n, [concat(D[i], P) | P <- PD(n/D[i], D[i])], [[n]]))), [[]])} apply( {A124980(n)=vecmin([prod(i=1, #a, A002144(i)^(a[i]-1)) | a<-concat([PD(n*2,n), PD(n*2-1)])])}, [1..44]) \\ M. F. Hasler, Jul 07 2024
-
Python
from sympy import divisors, isprime, prod def PD(n, L=None): return [[]] if n==1 else [ [d]+P for d in divisors(n)[:0:-1] if d <= (L or n) for P in PD(n//d, d)] A2144=lambda upto=999: filter(isprime, range(5, upto, 4)) def A124980(n): return min(prod(a**(f-1) for a,f in zip(A2144(), P)) for P in PD(n*2, n)+PD(n*2-1)) # M. F. Hasler, Jul 07 2024
Formula
a(n) = A000446(n), n > 1. - R. J. Mathar, Jun 15 2008
a(n) = min { k > 0 | A000161(k) = n }. - M. F. Hasler, Jul 07 2024
Extensions
More terms from R. J. Mathar, Nov 29 2006
Edited and extended by Ray Chandler, Jan 07 2012
Comments