A125001 Non-insertable primes: primes with property that no matter where you insert (or prepend or append) a digit you get a composite number (except for prepending a zero).
369293, 3823867, 5364431, 5409259, 7904521, 8309369, 9387527, 9510341, 22038829, 27195601, 28653263, 38696543, 39091441, 39113161, 43744697, 45095839, 45937109, 48296921, 48694231, 49085093, 49106677, 50791927
Offset: 1
Examples
369293 is a member because all of 1369293, 2369293, 3369293, ..., 3069293, 3169293, ..., 3692930, ..., 3692939 are composite.
Links
- David W. Wilson and Zak Seidov, Table of n, a(n) for n = 1..3000
- Jeremiah T. Southwick, Two Inquiries Related to the Digits of Prime Numbers, Ph. D. Dissertation, University of South Carolina (2020).
Programs
-
Mathematica
nipQ[x_]:=Module[{id=IntegerDigits[x],len},len=Length[id];AllTrue[ Select[ Flatten[Table[FromDigits[Insert[id,n,i]],{i,len+1},{n,0,9}],1],#!=x&], CompositeQ]]; Select[ Prime[Range[3050000]],nipQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 12 2018 *)
-
Python
from sympy import isprime from itertools import islice def ok(n): if not isprime(n): return False s = str(n) for c in "0123456789": for k in range(len(s)+1): w = s + c if k == 0 else s[:-k] + c + s[-k:] if w[0] != "0" and isprime(int(w)): return False return True print([k for k in range(10**7) if ok(k)]) # Michael S. Branicky, Sep 29 2022
Comments