A125030 a(n) = sum of exponents in the prime factorization of n that are noncomposite.
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 1, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 0, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 1, 0, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 3, 1, 4, 3
Offset: 1
Examples
a(720) = 3, since the prime factorization of 720 is 2^4 * 3^2 * 5^1 and two of the exponents in this factorization are noncomposites (the exponents 2 and 1, whose sum is 3).
Links
Programs
-
Mathematica
f[n_] := Plus @@ Select[Last /@ FactorInteger[n], # == 1 || PrimeQ[ # ] &];Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
-
PARI
A125030(n) = vecsum(apply(e -> if((1==e)||isprime(e),e,0), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017
Formula
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = e if e is composite, and 0 otherwise.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = - P(2) + Sum_{p prime} p * (P(p) - P(p+1)) = 0.52262278983683613884..., where P(s) is the prime zeta function. (End)
Extensions
Extended by Ray Chandler, Nov 19 2006