A125052 Sum of labels for nodes in generation n of the sub-Fibonacci tree (A125051).
1, 2, 3, 9, 39, 252, 2361, 32077, 631058, 18035534, 751936149, 45973362492, 4144777181393, 554100538432001, 110435083963283354, 32981178674724868365
Offset: 0
Keywords
Examples
The initial nodes of the sub-Fibonacci tree for generations 0..5 are: gen.0: [1]; gen.1: [2]; gen.2: [3]; gen.3: [4,5]; gen.4: (4)->[5,6,7],(5)->[6,7,8]; gen.5: (5)->[6,7,8,9],(6)->[7,8,9,10],(7)->[8,9,10,11], (6)->[7,8,9,10,11],(7)->[8,9,10,11,12],(8)->[9,10,11,12,13]. The sum of the labels for nodes in generation n+1 >= 2 is equal to: a(n+1) = sum (parent label)*(label) over all nodes in generation n + sum (parent label)*[label*(label+1)/2] over all nodes in gen. n-1. For example: a(2) = 3 = 1*2 + 1*( 1*2/2 ); a(3) = 9 = 2*3 + 1*( 2*3/2 ); a(4) = 39 = 3*(4+5) + 2*( 3*4/2 ); a(5) = 252 = 4*(5+6+7) + 5*(6+7+8) + 3*( 4*5/2 + 5*6/2 ); a(6) = 2361 = 5*(6+7+8+9) + 6*(7+8+9+10) + 7*(8+9+10+11) + 6*(7+8+9+10+11) + 7*(8+9+10+11+12) + 8*(9+10+11+12+13) + 4*( 5*6/2 + 6*7/2 + 7*8/2 ) + 5*( 6*7/2 + 7*8/2 + 8*9/2 ).
Links
- Peter C. Fishburn and Fred S. Roberts, Elementary sequences, sub-Fibonacci sequences, Discrete Appl. Math. 44 (1993), no. 1-3, 261-281.
Extensions
a(10)-a(15) from Alois P. Heinz, May 03 2015
Comments