cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125053 Variant of triangle A008301, read by rows of 2*n+1 terms, such that the first column is the secant numbers (A000364).

Original entry on oeis.org

1, 1, 3, 1, 5, 15, 21, 15, 5, 61, 183, 285, 327, 285, 183, 61, 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385, 50521, 151563, 247065, 325947, 378105, 396363, 378105, 325947, 247065, 151563, 50521, 2702765, 8108295, 13311741, 17908935
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2006, Dec 20 2006

Keywords

Comments

Foata and Han refer to this as the triangle of Poupard numbers h_n(k). - N. J. A. Sloane, Feb 17 2014
Central terms (A125054) equal the binomial transform of the tangent numbers (A000182).

Examples

			If we write the triangle like this:
......................... ...1;
................... ...1, ...3, ...1;
............. ...5, ..15, ..21, ..15, ...5;
....... ..61, .183, .285, .327, .285, .183, ..61;
. 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385;
then the first nonzero term is the sum of the previous row:
1385 = 61 + 183 + 285 + 327 + 285 + 183 + 61,
the next term is 3 times the first:
4155 = 3*1385,
and the remaining terms in each row are obtained by the rule illustrated by:
6681 = 2*4155 - 1385 - 4*61;
8475 = 2*6681 - 4155 - 4*183;
9129 = 2*8475 - 6681 - 4*285;
8475 = 2*9129 - 8475 - 4*327;
6681 = 2*8475 - 9129 - 4*285;
4155 = 2*6681 - 8475 - 4*183;
1385 = 2*4155 - 6681 - 4*61.
An alternate recurrence is illustrated by:
4155 = 1385 + 2*(61 + 183 + 285 + 327 + 285 + 183 + 61);
6681 = 4155 + 2*(183 + 285 + 327 + 285 + 183);
8475 = 6681 + 2*(285 + 327 + 285);
9129 = 8475 + 2*(327);
and then for k>n, T(n,k) = T(n,2*n-k).
		

Crossrefs

Cf. A008301, A000364 (secant numbers, which are the row sums), A125054 (central terms), A125055, A000182, A008282.
Cf. A210111 (left half).

Programs

  • Haskell
    a125053 n k = a125053_tabf !! n !! k
    a125053_row n = a125053_tabf !! n
    a125053_tabf = iterate f [1] where
    f zs = zs' ++ reverse (init zs') where
    zs' = (sum zs) : g (map (* 2) zs) (sum zs)
    g [x] y = [x + y]
    g xs y = y' : g (tail $ init xs) y' where y' = sum xs + y
    -- Reinhard Zumkeller, Mar 17 2012
  • Maple
    T := proc(n, k) option remember; local j;
      if n = 1 then 1
    elif k = 1 then add(T(n-1, j), j=1..2*n-3)
    elif k = 2 then 3*T(n, 1)
    elif k > n then T(n, 2*n-k)
    else 2*T(n, k-1) - T(n, k-2) - 4*T(n-1, k-2)
      fi end:
    seq(print(seq(T(n,k), k=1..2*n-1)), n=1..5); # Peter Luschny, May 11 2014
  • Mathematica
    t[n_, k_] := t[n, k] = If[2*n < k || k < 0, 0, If[n == 0 && k == 0, 1, If[k == 0, Sum[t[n-1, j], {j, 0, 2*n-2}], If[k <= n, t[n, k-1] + 2*Sum[t[n-1, j], {j, k-1, 2*n-1-k}], t[n, 2*n-k]]]]]; Table[t[n, k], {n, 0, 6}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 06 2012, translated from Pari *)
  • PARI
    T(n,k)=if(2*n
    				

Formula

Sum_{k=0..2n} C(2n,k)*T(n,k) = 4^n * A000182(n), where A000182 are the tangent numbers.
Sum_{k=0..2n} (-1)^n*C(2n,k)*T(n,k) = (-4)^n.