A125053 Variant of triangle A008301, read by rows of 2*n+1 terms, such that the first column is the secant numbers (A000364).
1, 1, 3, 1, 5, 15, 21, 15, 5, 61, 183, 285, 327, 285, 183, 61, 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385, 50521, 151563, 247065, 325947, 378105, 396363, 378105, 325947, 247065, 151563, 50521, 2702765, 8108295, 13311741, 17908935
Offset: 0
Examples
If we write the triangle like this: ......................... ...1; ................... ...1, ...3, ...1; ............. ...5, ..15, ..21, ..15, ...5; ....... ..61, .183, .285, .327, .285, .183, ..61; . 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385; then the first nonzero term is the sum of the previous row: 1385 = 61 + 183 + 285 + 327 + 285 + 183 + 61, the next term is 3 times the first: 4155 = 3*1385, and the remaining terms in each row are obtained by the rule illustrated by: 6681 = 2*4155 - 1385 - 4*61; 8475 = 2*6681 - 4155 - 4*183; 9129 = 2*8475 - 6681 - 4*285; 8475 = 2*9129 - 8475 - 4*327; 6681 = 2*8475 - 9129 - 4*285; 4155 = 2*6681 - 8475 - 4*183; 1385 = 2*4155 - 6681 - 4*61. An alternate recurrence is illustrated by: 4155 = 1385 + 2*(61 + 183 + 285 + 327 + 285 + 183 + 61); 6681 = 4155 + 2*(183 + 285 + 327 + 285 + 183); 8475 = 6681 + 2*(285 + 327 + 285); 9129 = 8475 + 2*(327); and then for k>n, T(n,k) = T(n,2*n-k).
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, Nov 20 2013;
- Foata, Dominique; Han, Guo-Niu; Strehl, Volker The Entringer-Poupard matrix sequence. Linear Algebra Appl. 512, 71-96 (2017).
Crossrefs
Programs
-
Haskell
a125053 n k = a125053_tabf !! n !! k a125053_row n = a125053_tabf !! n a125053_tabf = iterate f [1] where f zs = zs' ++ reverse (init zs') where zs' = (sum zs) : g (map (* 2) zs) (sum zs) g [x] y = [x + y] g xs y = y' : g (tail $ init xs) y' where y' = sum xs + y -- Reinhard Zumkeller, Mar 17 2012
-
Maple
T := proc(n, k) option remember; local j; if n = 1 then 1 elif k = 1 then add(T(n-1, j), j=1..2*n-3) elif k = 2 then 3*T(n, 1) elif k > n then T(n, 2*n-k) else 2*T(n, k-1) - T(n, k-2) - 4*T(n-1, k-2) fi end: seq(print(seq(T(n,k), k=1..2*n-1)), n=1..5); # Peter Luschny, May 11 2014
-
Mathematica
t[n_, k_] := t[n, k] = If[2*n < k || k < 0, 0, If[n == 0 && k == 0, 1, If[k == 0, Sum[t[n-1, j], {j, 0, 2*n-2}], If[k <= n, t[n, k-1] + 2*Sum[t[n-1, j], {j, k-1, 2*n-1-k}], t[n, 2*n-k]]]]]; Table[t[n, k], {n, 0, 6}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 06 2012, translated from Pari *)
-
PARI
T(n,k)=if(2*n
Comments