A125055
Diagonal of symmetric triangle A125053 located immediately below the central terms (A125054).
Original entry on oeis.org
1, 15, 285, 8475, 378105, 23823015, 2018820885, 221605991475, 30596648805105, 5189967817758015, 1061021392126671885, 257296819626005894475, 73023341368629447792105, 23978466652359211809453015
Offset: 0
A125053
Variant of triangle A008301, read by rows of 2*n+1 terms, such that the first column is the secant numbers (A000364).
Original entry on oeis.org
1, 1, 3, 1, 5, 15, 21, 15, 5, 61, 183, 285, 327, 285, 183, 61, 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385, 50521, 151563, 247065, 325947, 378105, 396363, 378105, 325947, 247065, 151563, 50521, 2702765, 8108295, 13311741, 17908935
Offset: 0
If we write the triangle like this:
......................... ...1;
................... ...1, ...3, ...1;
............. ...5, ..15, ..21, ..15, ...5;
....... ..61, .183, .285, .327, .285, .183, ..61;
. 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385;
then the first nonzero term is the sum of the previous row:
1385 = 61 + 183 + 285 + 327 + 285 + 183 + 61,
the next term is 3 times the first:
4155 = 3*1385,
and the remaining terms in each row are obtained by the rule illustrated by:
6681 = 2*4155 - 1385 - 4*61;
8475 = 2*6681 - 4155 - 4*183;
9129 = 2*8475 - 6681 - 4*285;
8475 = 2*9129 - 8475 - 4*327;
6681 = 2*8475 - 9129 - 4*285;
4155 = 2*6681 - 8475 - 4*183;
1385 = 2*4155 - 6681 - 4*61.
An alternate recurrence is illustrated by:
4155 = 1385 + 2*(61 + 183 + 285 + 327 + 285 + 183 + 61);
6681 = 4155 + 2*(183 + 285 + 327 + 285 + 183);
8475 = 6681 + 2*(285 + 327 + 285);
9129 = 8475 + 2*(327);
and then for k>n, T(n,k) = T(n,2*n-k).
-
a125053 n k = a125053_tabf !! n !! k
a125053_row n = a125053_tabf !! n
a125053_tabf = iterate f [1] where
f zs = zs' ++ reverse (init zs') where
zs' = (sum zs) : g (map (* 2) zs) (sum zs)
g [x] y = [x + y]
g xs y = y' : g (tail $ init xs) y' where y' = sum xs + y
-- Reinhard Zumkeller, Mar 17 2012
-
T := proc(n, k) option remember; local j;
if n = 1 then 1
elif k = 1 then add(T(n-1, j), j=1..2*n-3)
elif k = 2 then 3*T(n, 1)
elif k > n then T(n, 2*n-k)
else 2*T(n, k-1) - T(n, k-2) - 4*T(n-1, k-2)
fi end:
seq(print(seq(T(n,k), k=1..2*n-1)), n=1..5); # Peter Luschny, May 11 2014
-
t[n_, k_] := t[n, k] = If[2*n < k || k < 0, 0, If[n == 0 && k == 0, 1, If[k == 0, Sum[t[n-1, j], {j, 0, 2*n-2}], If[k <= n, t[n, k-1] + 2*Sum[t[n-1, j], {j, k-1, 2*n-1-k}], t[n, 2*n-k]]]]]; Table[t[n, k], {n, 0, 6}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 06 2012, translated from Pari *)
-
T(n,k)=if(2*n
A130847
Triangle T(n,k), 0<=k<=n, read by rows, given by [1,2,3,4,5,6,7,8,9,10,...] DELTA [1,1,6,6,15,15,28,28,...] where DELTA is the operator defined in A084938 .
Original entry on oeis.org
1, 1, 1, 3, 5, 2, 15, 42, 37, 10, 105, 450, 699, 458, 104, 945, 5775, 13845, 16065, 8866, 1816, 10395, 85995, 293265, 522345, 506028, 248660, 47312
Offset: 0
Triangle begins:
1;
1, 1;
3, 5, 2;
15, 42, 37, 10;
105, 450, 699, 458, 104;
945, 5775, 13845, 16065, 8866, 1816;
10395, 85995, 293265, 522345, 506028, 248660, 47312 ;...
Original entry on oeis.org
1, 1, 3, 5, 15, 21, 61, 183, 285, 327, 1385, 4155, 6681, 8475, 9129, 50521, 151563, 247065, 325947, 378105, 396363, 2702765, 8108295, 13311741, 17908935, 21517869, 23823015, 24615741, 199360981, 598082943, 985993845, 1341471567, 1643702325, 1874297343
Offset: 0
Showing 1-4 of 4 results.
Comments