cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125071 a(n) = sum of the exponents in the prime factorization of n which are not primes.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 5, 0, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 6, 2, 3, 1, 1, 2, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 5, 4, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Leroy Quet, Nov 18 2006

Keywords

Examples

			720 has the prime-factorization of 2^4 *3^2 *5^1. Two of these exponents, 4 and 1, aren't primes. So a(720) = 4 + 1 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Select[Last /@ FactorInteger[n], ! PrimeQ[ # ] &];Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
  • PARI
    A125071(n) = vecsum(apply(e -> if(isprime(e),0,e), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017

Formula

From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = A191558(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = Sum_{p prime} p * (P(p) - P(p+1)) - Sum_{k>=2} P(k) = 0.20171354082810650948..., where P(s) is the prime zeta function. (End)

Extensions

Extended by Ray Chandler, Nov 19 2006