A125096 Expansion of -1 + (phi(q) * phi(q^2) + phi(-q^2) * phi(q^4)) / 2 in powers of q.
1, 0, 2, 2, 0, 0, 0, 2, 3, 0, 2, 4, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 6, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 6, 2, 0, 2, 4, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 6, 2, 0, 0, 0, 0, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[MemberQ[{1, 3}, Mod[p, 8]], e + 1, (1 + (-1)^e)/2]; f[2, e_] := If[e > 1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 13 2022 *)
-
PARI
{a(n) = if( n<1, 0, qfrep([1, 0; 0, 8], n)[n] + qfrep([3, 1; 1, 3], n)[n])}
Formula
a(n) is multiplicative with a(2) = 0, a(2^e) = 2 if e>1, a(p^e) = e+1 if p == 1, 3 (mod 8), a(p^e) = (1+(-1)^e)/2 if p == 5, 7 (mod 8).
a(4*n + 2) = a(8*n + 5) = a(8*n + 7) = 0. a(4*n) = 2 * A002325(n). a(8*n + 1) = A112603(n). a(8*n + 3) = A033761(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(2)) = 1.110720... (A093954). - Amiram Eldar, Oct 13 2022