cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125112 Numbers which are not the sum of 3 nonzero squares, but which can be expressed as the product of two numbers that are the sum of 3 nonzero squares.

Original entry on oeis.org

63, 87, 135, 156, 159, 183, 207, 231, 252, 279, 303, 319, 327, 348, 351, 375, 399, 423, 444, 447, 471, 476, 495, 519, 540, 543, 551, 567, 572, 583, 591, 615, 624, 636, 639, 663, 671, 687, 700, 711, 732, 735, 759, 783, 807, 828, 831, 847, 855, 879, 903, 924
Offset: 1

Views

Author

Artur Jasinski, Nov 21 2006

Keywords

Comments

Intersection of A004214 with products of pairs of terms of A000408.

Examples

			a(2) = 87 = 3 * 29 = (1^2+1^2+1^2) * (4^2+3^2+2^2)
87 does not have a partition as a sum x^2+y^2+z^2 with x,y,z>0
63=3*21; 87=3*29; 135=3*45; 156=6*26; 572=22*26;
		

Crossrefs

Cf. A000408 (sums of 3 nonzero squares), A004214 (not sums of 3 nonzero squares).

Programs

  • Maple
    isA000408 := proc(n) local a,b,c2 ; a:=1; while a^2A125112 := proc(n) local d,i; if isA000408(n) then RETURN(false) ; else d := numtheory[divisors](n) ; for i from 1 to nops(d) do if isA000408(op(i,d)) and isA000408(n/op(i,d)) then RETURN(true) ; fi ; od ; RETURN(false) ; fi ; end: for an from 1 to 1600 do if isA125112(an) then printf("%d,",an) ; fi ; od ; # R. J. Mathar, Nov 23 2006
  • Mathematica
    isA000408[n_] := Module[{a, b, c2}, a = 1; While[a^2 < n, b = 1; While[b <= a && a^2 + b^2 < n, c2 = n - a^2 - b^2; If[IntegerQ@Sqrt@c2, Return[True]]; b++]; a++]; Return[False]];
    isA125112[n_] := Module[{d, i}, If[isA000408[n], Return[False], d = Divisors[n]; For[i = 1, i <= Length[d], i++, If[isA000408[d[[i]]] && isA000408[n/d[[i]]], Return[True]]]; Return[False]]];
    Select[Range[1600], isA125112] (* Jean-François Alcover, Jul 22 2024, after R. J. Mathar *)

Extensions

Edited and extended by R. J. Mathar and Ray Chandler, Nov 23 2006