A125118 Triangle read by rows: T(n,k) = value of the n-th repunit in base (k+1) representation, 1<=k<=n.
1, 3, 4, 7, 13, 21, 15, 40, 85, 156, 31, 121, 341, 781, 1555, 63, 364, 1365, 3906, 9331, 19608, 127, 1093, 5461, 19531, 55987, 137257, 299593, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111
Offset: 1
Examples
First 4 rows: 1: [1]_2 2: [11]_2 ........ [11]_3 3: [111]_2 ....... [111]_3 ....... [111]_4 4: [1111]_2 ...... [1111]_3 ...... [1111]_4 ...... [1111]_5 _ 1: 1 2: 2+1 ........... 3+1 3: (2+1)*2+1 ..... (3+1)*3+1 ..... (4+1)*4+1 4: ((2+1)*2+1)*2+1 ((3+1)*3+1)*3+1 ((4+1)*4+1)*4+1 ((5+1)*5+1)*5+1.
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Repunit
Crossrefs
This triangle shares some features with triangle A104878.
This triangle is a portion of rectangle A055129.
Each term of A110737 comes from the corresponding row of this triangle.
Columns (adjusting offset as necessary): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724, A218725, A218726, A218727, A218728, A218729, A218730, A218731, A218732, A218733, A218734, A132469, A218736, A218737, A218738, A218739, A218740, A218741, A218742, A218743, A218744, A218745, A218746, A218747, A218748, A218749, A218750, A218751, A218753, A218752.
Programs
-
Magma
[((k+1)^n -1)/k : k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 15 2022
-
Mathematica
Table[((k+1)^n -1)/k, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 15 2022 *)
-
SageMath
def A125118(n,k): return ((k+1)^n -1)/k flatten([[A125118(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Aug 15 2022
Formula
T(n, k) = Sum_{i=0..n-1} (k+1)^i.
T(n+1, k) = (k+1)*T(n, k) + 1.
Sum_{k=1..n} T(n, k) = A125120(n).
T(2*n-1, n) = A125119(n).
T(n, 1) = A000225(n).
T(n, 2) = A003462(n) for n>1.
T(n, 3) = A002450(n) for n>2.
T(n, 4) = A003463(n) for n>3.
T(n, 5) = A003464(n) for n>4.
T(n, 9) = A002275(n) for n>8.
T(n, n) = A060072(n+1).
T(n, n-1) = A023037(n) for n>1.
T(n, n-2) = A031973(n) for n>2.