A125127 Array L(k,n) read by antidiagonals: k-step Lucas numbers.
1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 3, 7, 7, 1, 1, 3, 7, 11, 11, 1, 1, 3, 7, 15, 21, 18, 1, 1, 3, 7, 15, 26, 39, 29, 1, 1, 3, 7, 15, 31, 51, 71, 47, 1, 1, 3, 7, 15, 31, 57, 99, 131, 76, 1, 1, 3, 7, 15, 31, 63, 113, 191, 241, 123, 1
Offset: 1
Examples
Table begins: 1 | 1 1 1 1 1 1 1 1 1 1 2 | 1 3 4 7 11 18 29 47 76 123 3 | 1 3 7 11 21 39 71 131 241 443 4 | 1 3 7 15 26 51 99 191 367 708 5 | 1 3 7 15 31 57 113 223 439 863 6 | 1 3 7 15 31 63 120 239 475 943 7 | 1 3 7 15 31 63 127 247 493 983 8 | 1 3 7 15 31 63 127 255 502 1003 9 | 1 3 7 15 31 63 127 255 511 1013
Links
- Freddy Barrera, Table of n, a(n) for n = 1..5050
- C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
- Eric Weisstein's World of Mathematics, Lucas n-Step Number
Crossrefs
n-step Lucas number analog of A092921 Array F(k, n) read by antidiagonals: k-generalized Fibonacci numbers (and see related A048887, A048888). L(1, n) = "1-step Lucas numbers" = A000012. L(2, n) = 2-step Lucas numbers = A000204. L(3, n) = 3-step Lucas numbers = A001644. L(4, n) = 4-step Lucas numbers = A001648 Tetranacci numbers A073817 without the leading term 4. L(5, n) = 5-step Lucas numbers = A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15. L(6, n) = 6-step Lucas numbers = A074584 Esanacci ("6-anacci") numbers. L(7, n) = 7-step Lucas numbers = A104621 Heptanacci-Lucas numbers. L(8, n) = 8-step Lucas numbers = A105754. L(9, n) = 9-step Lucas numbers = A105755. See A000295, A125129 for comments on partial sums of diagonals.
Programs
-
Sage
def L(k, n): if n < 0: return -1 a = [-1]*(k-1) + [k] # [-1, -1, ..., -1, k] for i in range(1, n+1): a[:] = a[1:] + [sum(a)] return a[-1] [L(k, n) for d in (1..12) for k, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 10 2019
Formula
L(k,n) = L(k,n-1) + L(k,n-2) + ... + L(k,n-k); L(k,n) = -1 for n < 0, and L(k,0) = k.
G.f. for row k: x*(dB(k,x)/dx)/(1-B(k,x)), where B(k,x) = x + x^2 + ... + x^k. - Petros Hadjicostas, Jan 24 2019
Extensions
Corrected by Freddy Barrera, Jan 10 2019