A125129 Partial sums of diagonals of array of k-step Lucas numbers as in A125127, read by antidiagonals.
1, 1, 4, 1, 8, 11, 1, 12, 19, 26, 1, 19, 33, 45, 57, 1, 30, 58, 84, 102, 120, 1, 48, 101, 157, 197, 222, 247, 1, 77, 179, 292, 380, 436, 469, 502, 1, 124, 318, 546, 731, 855, 929, 971, 1013, 1, 200, 567, 1026, 1409, 1674, 1838, 1932, 1984, 2036
Offset: 1
Examples
Row 1 of the derived array is the partial sum of the diagonal above the main diagonal of array of k-step Lucas numbers as in A125127, hence the partial sums of: 1, 7, 11, 26, 57, 120, 247, 502, 103, ... are 1 = 1; 8 = 1 + 7; 19 = 1 + 7 + 11; 45 = 1 + 7 + 11 + 26; and so forth.
Crossrefs
Formula
Row 0 = SUM[i=1..n]L(i,i) = A127128 = partial sum of main diagonal of array of A125127. Row 1 = SUM[i=1..n]L(i,i+1) = partial sum of diagonal above main diagonal of array of A125127. Row 2 = SUM[i=1..n]L(i,i+2) = partial sum of diagonal 2 above main diagonal of array of A125127. .. Row m = SUM[i=1..n]L(i,i+m) = partial sum of diagonal 2 above main diagonal of array of A125127.
Comments