cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A125128 a(n) = 2^(n+1) - n - 2, or partial sums of main diagonal of array A125127 of k-step Lucas numbers.

Original entry on oeis.org

1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 1

Views

Author

Jonathan Vos Post, Nov 22 2006

Keywords

Comments

Essentially a duplicate of A000295: a(n) = A000295(n+1).
Partial sums of main diagonal of array A125127 = L(k,n): k-step Lucas numbers, read by antidiagonals.
Equals row sums of triangle A130128. - Gary W. Adamson, May 11 2007
Row sums of triangle A130330 which is composed of (1,3,7,15,...) in every column, thus: row sums of (1; 3,1; 7,3,1; ...). - Gary W. Adamson, May 24 2007
Row sums of triangle A131768. - Gary W. Adamson, Jul 13 2007
Convolution A130321 * (1, 2, 3, ...). Binomial transform of (1, 3, 4, 4, 4, ...). - Gary W. Adamson, Jul 27 2007
Row sums of triangle A131816. - Gary W. Adamson, Jul 30 2007
A000975 convolved with [1, 2, 2, 2, ...]. - Gary W. Adamson, Jun 02 2009
The eigensequence of a triangle with the triangular series as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010

Examples

			a(1) = 1 because "1-step Lucas number"(1) = 1.
a(2) = 4 = a(1) + [2-step] Lucas number(2) = 1 + 3.
a(3) = 11 = a(2) + 3-step Lucas number(3) = 1 + 3 + 7.
a(4) = 26 = a(3) + 4-step Lucas number(4) = 1 + 3 + 7 + 15.
a(5) = 57 = a(4) + 5-step Lucas number(5) = 1 + 3 + 7 + 15 + 31.
a(6) = 120 = a(5) + 6-step Lucas number(6) = 1 + 3 + 7 + 15 + 31 + 63.
G.f. = x + 4*x^2 + 11*x^3 + 26*x^4 + 57*x^5 + 120*x^6 + 247*x^7 + 502*x^8 + ...
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> 2^(n+1) -n-2); # G. C. Greubel, Jul 26 2019
  • Magma
    I:=[1, 4, 11]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-2*x)),{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
    LinearRecurrence[{4,-5,2},{1,4,11},40] (* Harvey P. Dale, Nov 16 2014 *)
    a[ n_] := With[{m = n + 1}, If[ m < 0, 0, 2^m - (1 + m)]]; (* Michael Somos, Aug 17 2015 *)
  • PARI
    A125128(n)=2<M. F. Hasler, Jul 30 2015
    
  • PARI
    {a(n) = n++; if( n<0, 0, 2^n - (1+n))}; /* Michael Somos, Aug 17 2015 */
    
  • Sage
    [2^(n+1) -n-2 for n in (1..40)] # G. C. Greubel, Jul 26 2019
    

Formula

a(n) = A000295(n+1) = 2^(n+1) - n - 2 = Sum_{i=1..n} A125127(i,i) = Sum_{i=1..n} ((2^i)-1). [Edited by M. F. Hasler, Jul 30 2015]
From Colin Barker, Jun 17 2012: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: x/((1-x)^2*(1-2*x)). (End)
a(n) = A000225(n) + A000325(n) - 1. - Miquel Cerda, Aug 07 2016
a(n) = A095151(n) - A000225(n). - Miquel Cerda, Aug 12 2016
E.g.f.: 2*exp(2*x) - (2+x)*exp(x). - G. C. Greubel, Jul 26 2019

Extensions

Edited by M. F. Hasler, Jul 30 2015

A125127 Array L(k,n) read by antidiagonals: k-step Lucas numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 3, 7, 7, 1, 1, 3, 7, 11, 11, 1, 1, 3, 7, 15, 21, 18, 1, 1, 3, 7, 15, 26, 39, 29, 1, 1, 3, 7, 15, 31, 51, 71, 47, 1, 1, 3, 7, 15, 31, 57, 99, 131, 76, 1, 1, 3, 7, 15, 31, 63, 113, 191, 241, 123, 1
Offset: 1

Views

Author

Jonathan Vos Post, Nov 21 2006

Keywords

Examples

			Table begins:
1 | 1  1  1   1   1   1    1    1    1    1
2 | 1  3  4   7  11  18   29   47   76  123
3 | 1  3  7  11  21  39   71  131  241  443
4 | 1  3  7  15  26  51   99  191  367  708
5 | 1  3  7  15  31  57  113  223  439  863
6 | 1  3  7  15  31  63  120  239  475  943
7 | 1  3  7  15  31  63  127  247  493  983
8 | 1  3  7  15  31  63  127  255  502 1003
9 | 1  3  7  15  31  63  127  255  511 1013
		

Crossrefs

n-step Lucas number analog of A092921 Array F(k, n) read by antidiagonals: k-generalized Fibonacci numbers (and see related A048887, A048888). L(1, n) = "1-step Lucas numbers" = A000012. L(2, n) = 2-step Lucas numbers = A000204. L(3, n) = 3-step Lucas numbers = A001644. L(4, n) = 4-step Lucas numbers = A001648 Tetranacci numbers A073817 without the leading term 4. L(5, n) = 5-step Lucas numbers = A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15. L(6, n) = 6-step Lucas numbers = A074584 Esanacci ("6-anacci") numbers. L(7, n) = 7-step Lucas numbers = A104621 Heptanacci-Lucas numbers. L(8, n) = 8-step Lucas numbers = A105754. L(9, n) = 9-step Lucas numbers = A105755. See A000295, A125129 for comments on partial sums of diagonals.

Programs

  • Sage
    def L(k, n):
        if n < 0:
            return -1
        a = [-1]*(k-1) + [k] # [-1, -1, ..., -1, k]
        for i in range(1, n+1):
            a[:] = a[1:] + [sum(a)]
        return a[-1]
    [L(k, n) for d in (1..12) for k, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 10 2019

Formula

L(k,n) = L(k,n-1) + L(k,n-2) + ... + L(k,n-k); L(k,n) = -1 for n < 0, and L(k,0) = k.
G.f. for row k: x*(dB(k,x)/dx)/(1-B(k,x)), where B(k,x) = x + x^2 + ... + x^k. - Petros Hadjicostas, Jan 24 2019

Extensions

Corrected by Freddy Barrera, Jan 10 2019
Showing 1-2 of 2 results.