cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125140 SEPSigma(n) = (-1)^(Sum_i r_i)*Sum_{d|n} (-1)^(Sum_j Max(r_j))*d = Product_i (Sum_{s_i=1..r_i} p_i^s_i)+(-1)^r_i where n = Product_i p_i^r_i, d = Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing n.

Original entry on oeis.org

1, 1, 2, 7, 4, 2, 6, 13, 13, 4, 10, 14, 12, 6, 8, 31, 16, 13, 18, 28, 12, 10, 22, 26, 31, 12, 38, 42, 28, 8, 30, 61, 20, 16, 24, 91, 36, 18, 24, 52, 40, 12, 42, 70, 52, 22, 46, 62, 57, 31, 32, 84, 52, 38, 40, 78, 36, 28, 58, 56, 60, 30, 78, 127, 48, 20, 66, 112, 44, 24, 70, 169, 72
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jan 12 2007, Jan 29 2007

Keywords

Comments

SEP stands for Signed by Exponents of Prime factors.
By "Max(r_j)" I mean the following: If d|m, d=p^e*q^f, m=p^x*q^y*r^z then Max(e)=x, Max(f)=y.

Examples

			If n = 240, d = 12 then 2^max(r_j) = 2^max(2) = 2^4, 3^max(r_j) = 3^max(1) = 3^1, SEPSigma(240) = (1+2+4+8+16)*(-1+3)*(-1+5) = 248.
		

Programs

  • Maple
    A125140 := proc(n) local ifs,i,a,r,p ; ifs := ifactors(n)[2] ; a := 1 ; for i from 1 to nops(ifs) do r := op(2,op(i,ifs)) ; p := op(1,op(i,ifs)) ; a := a*(p*(1-p^r)/(1-p)+(-1)^r) ; od ; RETURN(a) ; end: for n from 1 to 80 do printf("%d, ",A125140(n)) ; od ; # R. J. Mathar, Jun 07 2007
  • Mathematica
    f[p_, e_] := (p^(e+1) - p)/(p - 1) + (-1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    A125140(n) = { my(f=factor(n), p, e); prod(k=1,#f~,p = f[k,1]; e = f[k,2]; ((-1)^e) + (((p^(e+1))-p) / (p-1))); }; \\ Antti Karttunen, Feb 21 2022

Formula

a(n) = Product_i (-1)^r_i + ((p_i^(r_i+1)-p_i)/(p_i-1)), where p_i and r_i range over the primes and their exponents in the prime factorization of n.
a(n) = Product_{p^e || n} (-1)^e + ((p^(1+e)-p)/(p-1)), where p and e range over the primes and their exponents in the prime factorization of n.
From Amiram Eldar, Sep 18 2023: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(2*s) * Product_{p prime} (1 - 1/p^s + 2/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - (p^2 - 2*p - 1)/(p^4 - 1)) = 0.48777088716109463306... . (End)

Extensions

More terms from R. J. Mathar, Jun 07 2007
Formula clarified by Antti Karttunen, Feb 21 2022