cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125141 a(1) = 2; for n>1, a(n)=SENSigma(a(n-1)), where SENSigma(m) = (-1)^((Sum_i r_i)+Omega(m))*Sum_{d|m} (-1)^((Sum_j Max(r_j))+Omega(d))*d = Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^(r_i+1) if m=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing m.

Original entry on oeis.org

2, 3, 4, 5, 6, 12, 20, 30, 72, 165, 288, 693, 1056, 3024, 9280, 22500, 42845, 60480, 240000, 794580, 1814400, 7040040, 26352000, 98654400, 321552000, 1260230400, 5311834416, 17570520000, 75087810000, 325180275840, 1526817600000
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jan 12 2007

Keywords

Comments

By "Max(r_j)" is meant the following: if d|m, d=p^e*q^f, m=p^x*q^y*r^z then Max(e)=x, Max(f)=y.

Crossrefs

Programs

  • Maple
    SENSigma := proc(n) local ifs,i,a,r,p ; ifs := ifactors(n)[2] ; a := 1 ; for i from 1 to nops(ifs) do r := op(2,op(i,ifs)) ; p := op(1,op(i,ifs)) ; a := a*(p*(1-p^r)/(1-p)-(-1)^r) ; od ; RETURN(a) ; end: A125141 := proc(nmax) local a ; a := [2] ; while nops(a)< nmax do a := [op(a),SENSigma(op(-1,a))] ; od ; RETURN(a) ; end: A125141(40) ; # R. J. Mathar, May 18 2007
  • Mathematica
    SENSigma[n_] := Module[{Ifs, i, a, r, p }, Ifs = FactorInteger[n]; a = 1; For[i = 1, i <= Length[Ifs], i++, r = Ifs[[i, 2]]; p = Ifs[[i, 1]]; a = a(p(1 - p^r)/(1 - p) - (-1)^r)]; Return[a]];
    A125141[nmax_] := Module[{a}, a = {2}; While[Length[a] < nmax, a = Append[a, SENSigma[a[[-1]]]]]; Return[a]];
    A125141[40] (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007
More terms from R. J. Mathar, May 18 2007