A125142 a(n) = smallest k such that SEPSigma^{k}(n)=1, or -1 if no such k exists. Here SEPSigma(m) = (-1)^(Sum_i r_i)*Sum_{d|m} (-1)^(Sum_j Max(r_j))*d =Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^r_i where m=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing m.
0, 1, 2, 4, 5, 2, 3, 6, 6, 5, 6, 4, 5, 3, 7, 9, 10, 6, 7, 7, 5, 6, 7, 6, 9, 5, 8, 6, 7, 7, 8, 11, 8, 10, 7, -1, -1, 7, 7, -1, -1, 5, 6, 8, -1, 7, 8, 9, -1, 9, 12, -1, -1, 8, -1, 8, -1, 7, 8, 9, 10, 8, 8, 10, 10, 8, 9, 12, 9, 7, 8, -1, -1, -1, 9, 9, 10, 7, 8, 12, -1, -1, -1, -1, 11, 6, 9, 11, 12, -1
Offset: 1
Keywords
Examples
SEPSigma^{5}(5)=1, so a(5)=5: 5 -> 4 -> 7 -> 6 -> 2 -> 1
Programs
-
Maple
A125140 := proc(n) local ifs,i,a,r,p ; ifs := ifactors(n)[2] ; a := 1 ; for i from 1 to nops(ifs) do r := op(2,op(i,ifs)) ; p := op(1,op(i,ifs)) ; a := a*(p*(1-p^r)/(1-p)+(-1)^r) ; od ; RETURN(a) ; end: A125142 := proc(n) local a,nsep; nsep := n ; a :=0 ; while nsep <> 1 do a := a+1 ; nsep := A125140(nsep) ; od ; RETURN(a) ; end: for n from 1 to 80 do printf("%d, ",A125142(n)) ; od ; # R. J. Mathar, Jun 07 2007
Extensions
Edited by N. J. A. Sloane at the suggestions of Andrew S. Plewe and R. J. Mathar, May 14 2007, Jun 10 2007
More terms from R. J. Mathar, Jun 07 2007
More terms from R. J. Mathar, Oct 20 2009
Comments