cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125171 Riordan array ((1-x)/(1-3*x+x^2),x/(1-x)) read by rows.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 13, 8, 4, 1, 34, 21, 12, 5, 1, 89, 55, 33, 17, 6, 1, 233, 144, 88, 50, 23, 7, 1, 610, 377, 232, 138, 73, 30, 8, 1, 1597, 987, 609, 370, 211, 103, 38, 9, 1, 4181, 2584, 1596, 979, 581, 314, 141, 47, 10, 1, 10946, 6765, 4180, 2575, 1560, 895, 455, 188, 57, 11, 1, 28657, 17711, 10945, 6755, 4135, 2455, 1350, 643
Offset: 0

Views

Author

Gary W. Adamson, Nov 22 2006

Keywords

Comments

Partial column sums triangle of odd-indexed Fibonacci numbers.
Left border = odd-indexed Fibonacci numbers, next-to-left border = even-indexed Fibonacci numbers. Row sums = A061667: (1, 3, 9, 26, 73, 201, ...).
Diagonal sums are A027994(n). - Philippe Deléham, Jan 14 2014

Examples

			(6,3) = 33 = 12 + 21 = (5,3) + (5,2). First few rows of the triangle are:
   1;
   2,  1;
   5,  3,  1;
  13,  8,  4,  1;
  34, 21, 12,  5,  1;
  89, 55, 33, 17,  6,  1;
  ...
		

Crossrefs

Cf. A027994, A061667 (row sums).

Programs

  • Maple
    C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
    end proc:
    with(combinat):
    for n from 0 to 10 do
        seq(C(n, n-k) + add(fibonacci(2*i)*C(n-i, n-k-i), i = 1..n), k = 0..n);
    end do; # Peter Bala, Mar 21 2018
  • PARI
    T(n,k)=if(k==n,1,if(k<=1,fibonacci(2*n-1),T(n-1,k)+T(n-1,k-1)));
    for(n=1,15,for(k=1,n,print1(T(n,k),", "));print()); /* show triangle */
    /* Joerg Arndt, Jun 17 2011 */

Formula

Let the left border = odd-indexed Fibonacci numbers, (1, 2, 5, 13, 34...); then for k>1, T(n,k) = T(n-1,k) + T(n-1,k-1).
G.f.: (1-x)^2/((1-3*x+x^2)*(1-x*(1+y))). - Paul Barry, Dec 05 2006
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 4*T(n-2,k) - 3*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(2,0)=5, T(2,1)=3, T(2,2)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 14 2014
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(13 + 8*x + 4*x^2/2! + x^3/3!) = 13 + 21*x + 33*x^2/2! + 50*x^3/3! + 73*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
T(n,k) = C(n, n-k) + Sum_{i = 1..n} Fibonacci(2*i)*C(n-i, n-k-i), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0. - Peter Bala, Mar 21 2018

Extensions

New description from Paul Barry, Dec 05 2006
Data error corrected by Johannes W. Meijer, Jun 16 2011