cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A027994 a(n) = (F(2n+3) - F(n))/2 where F() = Fibonacci numbers A000045.

Original entry on oeis.org

1, 2, 6, 16, 43, 114, 301, 792, 2080, 5456, 14301, 37468, 98137, 256998, 672946, 1761984, 4613239, 12078110, 31621701, 82787980, 216743836, 567446112, 1485598681, 3889356696, 10182482353, 26658108074, 69791870526, 182717549872, 478360854115, 1252365133866, 3278734743901, 8583839415648, 22472784017272
Offset: 0

Views

Author

Keywords

Comments

Substituting x*(1-x)/(1-2x) into x^2/(1-x^2) yields x^2*(g.f. of sequence).
The number of (s(0), s(1), ..., s(n+1)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+1, s(0) = 2, s(n+1) = 3. - Herbert Kociemba, Jun 02 2004
Diagonal sums of triangle in A125171. - Philippe Deléham, Jan 14 2014

Crossrefs

Programs

  • Magma
    [(Fibonacci(2*n+3)-Fibonacci(n))/2 : n in [0..40]]; // Vincenzo Librandi, Jan 01 2025
  • Mathematica
    Table[(Fibonacci[2n+3]-Fibonacci[n])/2,{n,0,30}] (* or *) LinearRecurrence[{4,-3,-2,1},{1,2,6,16},30] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    a(n)=(fibonacci(2*n+3)-fibonacci(n))/2
    

Formula

G.f.: (1-x)^2/((1-x-x^2)*(1-3*x+x^2)). - Floor van Lamoen and N. J. A. Sloane, Jan 21 2001
a(n) = Sum_{k=0..n} T(n, k)*T(n, n+k), T given by A027926.
a(n) = 2*a(n-1) + Sum_{m < n-1} a(m) + F(n-1) = A059512(n+2) - F(n) where F(n) is the n-th Fibonacci number (A000045). - Floor van Lamoen, Jan 21 2001
a(n) = (2/5)*Sum_{k=1..4} sin(2*Pi*k/5)*sin(3*Pi*k/5)*(1+2*cos(Pi*k/5))^(n+1). - Herbert Kociemba, Jun 02 2004
a(-1-2n) = A056014(2n), a(-2n) = A005207(2n-1).
E.g.f.: exp(3*x/2)*cosh(sqrt(5)*x/2) + exp(x/2)*(2*exp(x) - 1)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Jan 01 2025

A125172 Triangle T(n,k) with partial column sums of the even-indexed Fibonacci numbers.

Original entry on oeis.org

1, 3, 1, 8, 4, 1, 21, 12, 5, 1, 55, 33, 17, 6, 1, 144, 88, 50, 23, 7, 1, 377, 232, 138, 73, 30, 8, 1, 987, 609, 370, 211, 103, 38, 9, 1, 2584, 1596, 979, 581, 314, 141, 47, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 22 2006

Keywords

Comments

"Partial column sums" means the 1st column consists of the even-indexed Fibonacci numbers, the 2nd column shows the partial sums of the first column, the 3rd column the partial sums of the 2nd, etc. - R. J. Mathar, Sep 06 2011
Mirror of the fission triangle A193667, as in the Mathematica program below. - Clark Kimberling, Aug 11 2011

Examples

			First few rows of the triangle:
    1;
    3,  1;
    8,  4,  1;
   21, 12,  5,  1;
   55, 33, 17,  6,  1;
  144, 88, 50, 23,  7,  1;
  ...
		

Crossrefs

Cf. A105693 (row sums), A125171, A193667.

Programs

  • Mathematica
    z = 11;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193667 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]  (* this sequence *)
    (* Clark Kimberling, Aug 11 2011 *)

Formula

T(n,1) = A001906(n).
T(n,k) = T(n-1,k-1) + T(n-1,k), k > 1.
From R. J. Mathar, Sep 06 2011: (Start)
T(n,k) = A125171(n,k), i.e., A125171 without column k=0.
Conjecture: T(n,k) = T(n,k-1) - A121460(n+1,k). (End)
Showing 1-2 of 2 results.