A125177 Triangle read by rows: T(n,0)=C(2n,n)/(n+1) for n>=0; T(n,n+1)=0; T(n,k)=T(n-1,k)+T(n-1,k-1) for 1<=k<=n.
1, 1, 1, 2, 2, 1, 5, 4, 3, 1, 14, 9, 7, 4, 1, 42, 23, 16, 11, 5, 1, 132, 65, 39, 27, 16, 6, 1, 429, 197, 104, 66, 43, 22, 7, 1, 1430, 626, 301, 170, 109, 65, 29, 8, 1, 4862, 2056, 927, 471, 279, 174, 94, 37, 9, 1, 16796, 6918, 2983, 1398, 750, 453, 268, 131, 46, 10, 1, 58786
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 2, 2, 1; 5, 4, 3, 1; 14, 9, 7, 4, 1; 42, 23, 16, 11, 5, 1; ... (5,3) = 16 = 7 + 9 = (4,3) + (4,2). From _Paul Barry_, May 06 2009: (Start) Production matrix is 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 0, 1, 1, 4, 0, 0, 0, 1, 1, 9, 0, 0, 0, 0, 1, 1, 21, 0, 0, 0, 0, 0, 1, 1, 51, 0, 0, 0, 0, 0, 0, 1, 1, 127, 0, 0, 0, 0, 0, 0, 0, 1, 1 (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Maple
T:=proc(n,k) if k=0 then binomial(2*n,n)/(n+1) elif n=0 then 0 else T(n-1,k)+T(n-1,k-1) fi end: for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form G:=(1-x)*(1-sqrt(1-4*x))/2/x/(1-x-t*x): Gser:=simplify(series(G,x=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,x,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
-
Maxima
T(n,k)=sum((binomial(2*i,i)*binomial(n-i-1,n-k-i))/(i+1),i,0,n-k); /* Vladimir Kruchinin, Nov 03 2016 */
Formula
G.f.: G(t,x)=(1-x)[1-sqrt(1-4x)]/[2x(1-x-tx)].
T(n,k) = Sum_{i=0..n-k} binomial(n-i-1,n-k-i)*A000108(i). - Vladimir Kruchinin, Nov 03 2016
Extensions
Edited by Emeric Deutsch, Dec 28 2006
Definition amended by Georg Fischer, Jun 16 2022
Comments