cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125180 a(n) = 2*a(n-1) + prime(n) - prime(n-1), a(1)=2, where prime(n) denotes the n-th prime.

Original entry on oeis.org

2, 5, 12, 26, 56, 114, 232, 466, 936, 1878, 3758, 7522, 15048, 30098, 60200, 120406, 240818, 481638, 963282, 1926568, 3853138, 7706282, 15412568, 30825142, 61650292, 123300588, 246601178, 493202360, 986404722, 1972809448, 3945618910
Offset: 1

Views

Author

Gary W. Adamson, Nov 22 2006

Keywords

Comments

Row sums of A125179.
Limit_{n->oo} a(n)/a(n-1) = 2.

Examples

			a(4)=26 because 4*prime(1)+2*prime(2)+prime(3)+prime(4) = 8+6+5+7 = 26.
		

Crossrefs

Programs

  • Magma
    [n eq 1 select 2 else 2*Self(n-1)+NthPrime(n)-NthPrime(n-1):n in [1..31]]; // Marius A. Burtea, Oct 17 2019
  • Maple
    a[1]:=2: for n from 2 to 35 do a[n]:=2*a[n-1]+ithprime(n)-ithprime(n-1) od: seq(a[n],n=1..35);
  • Mathematica
    a[1] = 2; a[n_] := 2*a[n - 1] + Prime[n] - Prime[n - 1]; Table[a[n], {n, 1, 31}] (* James C. McMahon, Dec 10 2023 *)

Formula

a(n) = prime(n) + Sum_{j=1..n-1} 2^(n-j-1)*prime(j), where prime(k) denotes the k-th prime.
a(n) = Sum_{i=0..prime(n)-1} 2^(n-1-pi(i)), where prime(n) = A000040(n) and pi(n) = A000720(n). - Ridouane Oudra, Oct 17 2019
a(1) = 2 and a(n) = prime(n) + Sum_{i=1..n-1} a(i) for n > 1. - Alexandre Herrera, Dec 10 2023
a(n) = A000040(n) + A110299(n-1), for n > 1. - Ridouane Oudra, Jul 27 2025

Extensions

Edited by N. J. A. Sloane, Dec 02 2006