A125184 Triangle read by rows: T(n,k) is the coefficient of t^k in the Stern polynomial B(n,t) (n>=0, k>=0).
0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 1, 2, 1, 3, 1, 0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 3, 3, 0, 0, 1, 2, 1, 4, 3, 0, 1, 3, 1, 1, 3, 2, 1, 0, 0, 0, 1, 1, 1, 2, 3, 1, 0, 1, 2, 2, 1, 3, 3, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 0, 1, 1, 1
Offset: 0
Examples
Triangle starts: 0; 1; 0, 1; 1, 1; 0, 0, 1; 1, 2; 0, 1, 1; 1, 1, 1; 0, 0, 0, 1; 1, 2, 1; 0, 1, 2; 1, 3, 1;
Links
- T. D. Noe, Rows n = 0..1000, Flattened
- B. Adamczewski, Non-converging continued fractions related to the Stern diatomic sequence, Acta Arithm. 142 (1) (2010) 67-78.
- N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
- K. Dilcher, L. Ericksen, Reducibility and irreducibility of Stern (0, 1)-polynomials, Communications in Mathematics, Volume 22/2014 , pp. 77-102.
- K. Dilcher and K. B. Stolarsky, A polynomial analogue to the Stern sequence, Int. J. Number Theory 3 (1) (2007) 85-103.
- S. Klavzar, U. Milutinovic and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007) 86-95.
- D. H. Lehmer, On Stern's Diatomic Series, Amer. Math. Monthly 36(1) 1929, pp. 59-67.
- D. H. Lehmer, On Stern's Diatomic Series, Amer. Math. Monthly 36(1) 1929, pp. 59-67. [Annotated and corrected scanned copy]
- Maciej Ulas, Strong arithmetic property of certain Stern polynomials, arXiv:1909.10844 [math.NT], 2019.
- Maciej Ulas and Oliwia Ulas, On certain arithmetic properties of Stern polynomials, arXiv:1102.5109 [math.CO], 2011.
Crossrefs
Programs
-
Maple
B:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then t*B(n/2) else B((n+1)/2)+B((n-1)/2) fi end: for n from 0 to 36 do B(n):=sort(expand(B(n))) od: dg:=n->degree(B(n)): 0; for n from 0 to 40 do seq(coeff(B(n),t,k),k=0..dg(n)) od; # yields sequence in triangular form
-
Mathematica
B[0, ] = 0; B[1, ] = 1; B[n_, t_] := B[n, t] = If[EvenQ[n], t*B[n/2, t], B[1 + (n-1)/2, t] + B[(n-1)/2, t]]; row[n_] := CoefficientList[B[n, t], t]; row[0] = {0}; Array[row, 40, 0] // Flatten (* Jean-François Alcover, Jul 30 2015 *)
Extensions
0 prepended by T. D. Noe, Feb 28 2011
Original comment slightly edited by Antti Karttunen, Oct 27 2016
Comments