A125196 Number of magic labelings of the Petersen graph with magic sum n.
1, 6, 27, 87, 228, 513, 1034, 1914, 3315, 5440, 8541, 12921, 18942, 27027, 37668, 51428, 68949, 90954, 118255, 151755, 192456, 241461, 299982, 369342, 450983, 546468, 657489, 785869, 933570, 1102695, 1295496
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- M. M. Ahmed, Algebraic Combinatorics of Magic Squares, math.CO/0405476.
- Index entries for linear recurrences with constant coefficients, signature (5,-9,5,5,-9,5,-1).
Programs
-
Maple
a := proc(r) local r1 ; r1 := r^5/24+5*r^4/16+25*r^3/24+15*r^2/8+23*r/12 ; if r mod 2 = 0 then r1+1 ; else r1+13/16 ; fi ; end: for n from 0 to 30 do printf("%d ",a(n)) ; od;
-
Mathematica
CoefficientList[Series[(x^4 + x^3 + 6x^2 + x + 1)/(1 - x)^6/(1 + x), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 12 2012 *) LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,6,27,87,228,513,1034},40] (* Harvey P. Dale, Sep 10 2024 *)
Formula
a(n) = (1/32)*(29*C(n+5,5) + 21*C(n+4,5) + 126*C(n+3,5) - 34*C(n+2,5) + 21*C(n+1,5) - 3*C(n,5) + 3*(-1)^n). [Stanley]. - N. J. A. Sloane, Jul 07 2014
G.f.: (x^4+x^3+6x^2+x+1)/((1-x)^6*(1+x)) [Stanley; Ahmed].
Extensions
Stanley reference added by N. J. A. Sloane, Jul 07 2014