A125211 a(n) = total number of primes of the form |k! - n|.
0, 0, 2, 3, 2, 1, 3, 2, 2, 0, 5, 1, 7, 1, 1, 0, 9, 1, 6, 1, 2, 1, 4, 1, 2, 1, 1, 0, 5, 1, 8, 1, 1, 0, 2, 0, 10, 1, 1, 0, 6, 1, 10, 1, 1, 0, 10, 1, 3, 0, 0, 0, 7, 1, 2, 0, 0, 0, 7, 1, 11, 1, 1, 0, 2, 0, 9, 1, 1, 0, 9, 1, 11, 1, 1, 0, 4, 0, 11, 1, 1, 0, 8, 1, 3, 0, 0, 0, 14, 1, 3, 0, 0, 0, 2, 0, 11, 1, 1, 0, 9
Offset: 1
Keywords
Examples
a(4) = 3 because there are 3 primes of the form |k! - 4|: 1! - 4 = -3, 2! - 4 = -2, 3! - 4 = 2. k! - 4 is composite for all k>3 because it is divisible by 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2500
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Range[n],PrimeQ[ #!-n]&]],{n,1,300}]
Comments